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Abstract Interpreting visual scenes typically requires us to accumulate information from multiple
locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we
show that participants’ scan paths follow an active sensing strategy that incorporates information
already acquired about the scene and knowledge of the statistical structure of patterns.
Intriguingly, categorization performance was markedly improved when locations were revealed to
participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian
ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent
suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye
movements, and the central process of selecting fixation locations is around 70% efficient in our
task. Our results suggest that participants select eye movements with the goal of maximizing
information about abstract categories that require the integration of information from multiple
locations.
DOI: 10.7554/eLife.12215.001

Introduction
Several lines of evidence suggest that humans and other animals direct their sensors (e.g. their eyes,
whiskers, or hands) so as to extract task-relevant information efficiently (Yarbus, 1967;
Kleinfeld et al., 2006; Lederman and Klatzky, 1987). Indeed, in vision, the pattern of eye move-
ments used to scan a scene depends on the type of information sought (Hayhoe and Ballard, 2005;
Rothkopf et al., 2007), and has been implied to follow from an active strategy (Najemnik and Geis-
ler, 2005; Renninger et al., 2007; Navalpakkam et al., 2010; Nelson and Cottrell, 2007;
Toscani et al., 2013; Chukoskie et al., 2013) in which each saccade depends on the information
gathered about the current visual scene and prior knowledge about scene statistics. However, until
now, studies of such active sensing have either been limited to search tasks or to qualitative descrip-
tions of the active sensing process. In particular, no studies have shown whether the information
acquired by each individual fixation is being optimized. Rather, the fixation patterns have either
been described without a tight link to optimality (Ballard et al., 1995; Epelboim and Suppes, 2001)
or compared to an optimal strategy only through summary statistics such as the total number of eye
movements and the distribution of saccade vectors (Najemnik and Geisler, 2005; 2008) that could
have arisen through a heuristic. Therefore, these studies leave open the question as to what extent
eye movements truly follow an active optimal strategy. In order to study eye movements in a more
principled quantitative manner, we estimated the efficiency of eye movements in a high-level task on
a fixation-by-fixation basis.

Here, we focus on a pattern categorization task that is fundamentally different from visual search,
in which often there is a single location in the scene that has all the necessary information (the tar-
get), and eye movements are well described by the simple mechanism of inhibition of return
(Klein, 2000). In contrast, in many other tasks, such as constructing the meaning of a sentence of
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written text, or judging from a picture how long a visitor has been away from a family (Yarbus, 1967),

no single visual location has the necessary information in it and thus such tasks require more com-

plex eye movement patterns. While some basic-level categorization tasks can be solved in a single

fixation (Thorpe et al., 1996; Li et al., 2002), many situations require multiple fixations to extract

several details at different locations to make a decision. Therefore, when people have to extract

abstract information (eg., how long the visitor has been away) they need to integrate a series of

detailed observations (such as facial expression, postures and gestures of the people) across the

scene, relying heavily on foveal vision information with peripheral vision playing a more minor role

(Levi, 2008).
We illustrate the key features of active sensing in visual categorization by a situation that requires

the categorization of an animal based on its fur that is partially obscured by foliage (Figure 1). As

each individual patch of fur can be consistent with different animals, such as a zebra or a cheetah,

and the foliage prevents the usage of gist information (Oliva and Torralba, 2006), multiple locations

have to be fixated individually, and the information accumulated across these locations, until a deci-

sion can be made with high confidence. For maximal efficiency, this requires a closed loop interac-

tion between perception, which integrates information from the locations already fixated with prior

knowledge about the prevalence of different animals and their fur patterns, and thus maintains

beliefs about which animal might be present in the image, and the planning of eye movement, which

should direct the next fixation at a location which has potentially the most information relevant for

the categorization (Figure 1). Inspired by this example, and to allow a mathematically tractable

quantification of the information at any fixation location, we designed an experiment with visual pat-

terns that were statistically well-controlled and relatively simple, while ensuring that foveal vision

would dominate by using a gaze-contingent categorization task in which we tracked the eye and suc-

cessively revealed small apertures of the image at each fixation location. In contrast to previous stud-

ies (Najemnik and Geisler, 2005; Renninger et al., 2007; Peterson and Eckstein, 2012;

Morvan and Maloney, 2012), our task required multiple locations to be visited to extract informa-

tion about abstract pattern categories.

eLife digest To interact with the world around us, we need to decide how best to direct our
eyes and other senses to extract relevant information. When viewing a scene, people fixate on a
sequence of locations by making fast eye movements to shift their gaze between locations. Previous
studies have shown that these fixations are not random, but are actively chosen so that they depend
on both the scene and the task. For example, in order to determine the gender or emotion from a
face, we fixate around the eyes or the nose, respectively.

Previous studies have only analyzed whether humans choose the optimal fixation locations in very
simple situations, such as searching for a square among a set of circles. Therefore, it is not known
how efficient we are at optimizing our rapid eye movements to extract high-level information from
visual scenes, such as determining whether an image of fur belongs to a cheetah or a zebra.

Yang, Lengyel and Wolpert developed a mathematical model that determines the amount of
information that can be extracted from an image by any set of fixation locations. The model could
also work out the next best fixation location that would maximize the amount of information that
could be collected. This model shows that humans are about 70% efficient in planning each eye
movement. Furthermore, it suggests that the inefficiencies are largely caused by imperfect vision
and inaccurate eye movements.

Yang, Lengyel and Wolpert’s findings indicate that we combine information from multiple
locations to direct our eye movements so that we can maximize the information we collect from our
surroundings. The next challenge is to extend this mathematical model and experimental approach
to even more complex visual tasks, such as judging an individual’s intentions, or working out the
relationships between people in real-life settings.
DOI: 10.7554/eLife.12215.002
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Results

Categorization performance and eye movement patterns
We generated images of three types: patchy, horizontal stripy, and vertical stripy (Figure 2A). Partic-

ipants had to categorize each image pattern as patchy or stripy (disregarding whether a stripy image

was horizontal or vertical—the inclusion of two different stripy image types prevented participants

from solving the task based on one image axis alone). The images were generated by a flexible sta-

tistical model that could generate many examples from each of the three image types, so that the

individual pixel values varied widely even within a type and only higher order statistical information

(ie. the length scale of spatial correlations) could be used for categorization. We first presented the

participants with examples of full images to familiarize them with the statistics of the image types

and to ensure their categorization with full images was perfect. We then switched to an active gaze-

contingent mode in which the entire pattern was initially occluded by a black mask and the underly-

ing image was revealed with a small aperture at each fixation location (Figure 2B; for visibility, the

black mask is shown as white). As a control, we also used a number of passive revealing conditions

in which the revealing locations were chosen by the computer rather than in a gaze-contingent man-

ner. In all conditions, we controlled the number of revealings on each trial before requiring the

Figure 1. Active sensing involves an interplay between perception and action. When trying to categorize whether

a fur hidden behind foliage (left) belongs to a zebra or a cheetah, evidence from multiple fixations (blue, the

visible patches of the fur, and their location in the image) needs to be integrated to generate beliefs about fur

category (right, here represented probabilistically, as the posterior probability of the particular animal given the

evidence). Given current beliefs, different potential locations in the scene will be expected to have different

amounts of informativeness with regard to further distinguishing between the categories, and optimal sensing

involves choosing the maximally informative location (red). In the example shown, after the first two fixations (blue)

it is ambiguous whether the fur belongs to a zebra or a cheetah, but active sensing chooses a collinearly located

revealing position (red) which should be informative and indeed reveals a zebra with high certainty. Note that this

is just an illustrative example.

DOI: 10.7554/eLife.12215.003
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participants to categorize the image (Figure 2B). To ensure that participants had equal chance to

extract information from all revealing locations in the passive as well as the active conditions we

allowed the participants to rescan the revealed locations after the final revealing (see also

Materials and methods for full rationale). Importantly, in the active revealing condition, even though

rescanning was allowed after the final revealing, participants had to select all revealing locations in

real time without knowing how many revealings they would be allowed on a given trial. Therefore,

although rescanning could improve categorization it was unlikely to influence participants’ active

revealing strategy. To confirm this we also performed a control in which rescanning was not allowed

(see below).

Figure 2. Image categorization task and participants’ performance. (A) Example stimuli for each of the three image types sampled from two-

dimensional Gaussian processes. (B) Experimental design. Participants started each trial by fixating the center cross. In the free-scan condition, an

aperture of the underlying image was revealed at each fixation location. In the passive condition, revealing locations were chosen by the computer. In

both conditions, after a random number of revealings, participants were required to make a category choice (patchy, P, versus stripy, S) and were given

feedback. (C) Categorization performance as a function of revealing number for each of the three participants (symbols and error bars: mean ! SEM

across trials), and their average, under the free-scan and passive conditions corresponding to different revealing strategies. Lines and shaded areas

show across-trial mean ! SEM for the ideal observer model. Figure 2—figure supplement 1 shows categorization performance in a control

experiment in which no rescanning was allowed.

DOI: 10.7554/eLife.12215.004

The following figure supplement is available for figure 2:

Figure supplement 1. Performance in the no-rescanning control experiment.

DOI: 10.7554/eLife.12215.005
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In the free-scan (active) condition, categorization performance improved with the number of
revealings for each participant (Figure 2C, red points), indicating the successful integration of infor-
mation across a large number of fixations. Although we used a gaze-contingent display, the task still
allowed participants to employ natural every-day eye movement strategies, consistent with the inter-

saccadic intervals (mean 408 ms) and relative saccade size (0.75–3.9 normalized by the three differ-
ent relevant length scales of the stimuli) that were similar though somewhat shorter than those
recorded for everyday activities (e.g. tea making; mean inter-saccadic interval 497 ms, and 0.95–19
relative saccade size normalized by the size of different fixated objects; Hayhoe et al.,

2003; Land and Tatler, 2009).
To examine whether fixation locations depended on the underlying image patterns, we con-

structed revealing density maps for each image type. To account for the translation-invariant statis-

tics of the underlying images of a type, we used the relative location of revealings obtained by
subtracting from the absolute location of each revealing (measured in screen-centered coordinates)
the center of mass of the absolute locations within each trial (Materials and methods). In order to
compare eye movement patterns across conditions and participants, we subtracted the mean den-

sity map across all images for each participant. Importantly, we found that the pattern of revealings
strongly depended on image type (Figure 3A, first four rows). The pattern of eye movements for
images of the same type were positively correlated for each participant (Figure 3B, left, orange
bars; p<0.001 in all cases), whereas eye movements for images of different types were negatively

correlated (Figure 3B, left, purple bars; p<0.001 in all cases). We also found that eye movement pat-
terns became increasingly differentiated over the course of the trial as progressively more of the
image was revealed (Figure 3B, left, curves). The dependence of the eye movement patterns on the
underlying image type shows that participants employed an active sensing strategy.

To assess whether this active strategy used by our participants contributed to performance
improvement, we examined the same participants in a passive revealing condition. When the reveal-
ings were drawn randomly from an isotropic Gaussian centered on the image, performance was sub-

stantially impaired (Figure 2C, blue points), indicating that participants’ decision performance
benefited from their active sensing strategy. After the final revealing, participants rescanned only
briefly, on average for 5.0 s in the active condition, 6.4 s in the passive random condition before
making a decision. Moreover, their performance did not improve with increased rescanning time,

instead it correlated negatively with rescanning time for 2 out of 3 participants, such that the proba-
bility of a correct decision for rescanning times at the 25th and 75th percentiles of the rescanning
time distribution fell from 0.77 to 0.54 (p<0.001) and from 0.77 to 0.66 (p<0.03), respectively. This
suggests that longer rescanning times indicate when participants are uncertain rather than providing

the main source of information for their decisions. This is in contrast to additional revealings during
the original scanning period which clearly benefit performance when chosen appropriately
(Figure 2C).

To further examine whether the rescanning period after the final revealing affected the partici-
pants scanning strategy, we examined additional participants in a free-scan condition in which no
rescanning was allowed after the final revealing (the display blanked). The revealing density maps for
these participants were very similar to the maps of participants who were allowed to rescan (average
within-type vs. across-type correlation across the two groups of participants: 0.63 vs. "0.30) and per-

formance was also similar (Figure 2—figure supplement 1 and Figure 3—figure supplement 1),
although as expected slightly worse without rescanning. The proportion correct across all trials for
the participants who were allowed to rescan was 0.65, 0.66 and 0.69 (average 0.66) and for those
not allowed to rescan was 0.64, 0.58 and 0.66 (average 0.63). This confirms that allowing rescanning

did not substantially change participants’ revealing strategy.

Bayesian ideal observer
We constructed an ideal observer (Geisler, 2011) which computed a posterior distribution, PðcjDÞ,
over image category c given the observations D (collection of previous revealing locations and
revealed pixel values in the trial) and made a choice such that the category with higher posterior

probability was more likely to be selected (see Materials and methods). To construct this model, we
considered three sources of suboptimality: prior biases implying imperfect knowledge of the precise
correlation length scales of each pattern category, perception noise that distorts the displayed pixel
values, and decision noise which occasionally results in selecting the category with the lower
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posterior probability (Houlsby et al., 2013). We fitted six models to the individual choices of each

participant. These models differed in the kind of prior bias and decision noise they included, and we

selected the model with the strongest statistical evidence, as quantified by the Bayesian information

criterion (Tables 1–2). The best model (4 parameters in total) provided a close match to the

Figure 3. Density maps of relative revealing locations and their correlations. (A) Revealing density maps for participants and BAS. Last three columns

show mean-corrected revealing densities for each of the three underlying image types (removing the mean density across image types, first column).

Bottom: color scales used for all mean densities (left), and for all mean-corrected densities (right). All density maps use the same scale, such that a

density of 1 corresponds to the peak mean density across all maps. Figure 3—figure supplement 1 shows revealing density maps obtained for

participants in a control experiment in which no rescanning was allowed. Figure 3—figure supplement 2 shows the measured saccadic noise that was

incorporated into the BAS simulations. Figure 3—figure supplement 3 shows density maps separately for correct and incorrect trials. (B) The curves

are correlations for individual participants as a function of revealing number with their own maps (left) and the maps generated by BAS (right). The bars

are correlations at 25 revealing (see Materials and methods). Orange shows within image type correlation, ie. correlation between revealing densities

obtained for images of the same type, and purple shows across image type correlation. Data are represented as mean ! SD for the curves and mean !

95% confidence intervals for the bars.

DOI: 10.7554/eLife.12215.006

The following figure supplements are available for figure 3:

Figure supplement 1. Revealing density maps in the no-rescanning control experiment.

DOI: 10.7554/eLife.12215.007

Figure supplement 2. Saccadic variability and bias.

DOI: 10.7554/eLife.12215.008

Figure supplement 3. Revealing density maps of the average participant in the main experiment split into correct and incorrect trials, and the BAS

revealing maps.

DOI: 10.7554/eLife.12215.009
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participants’ performance both in the active and passive random-revealing conditions (Figure 2C,

red and blue lines). Crucially, this model also allowed us to estimate the beliefs that participants

held about image categories at any point in a trial, which was necessary for determining the optimal

next eye movement that could maximally disambiguate between the categories.

Predicting eye movement patterns by a Bayesian active sensor
algorithm
To be able to rigorously assess how close our participants were to optimal sensing, we developed a

Bayesian active sensor (BAS) algorithm which is optimal in minimizing categorization error with every

single revealing. That is, for our task, the aim of BAS is to choose the next fixation location, x%, so as

to maximally reduce uncertainty in the category (MacKay, 1992). This objective is formalized by the

BAS score function which expresses the expected information gain when choosing x%, and which can

be conveniently computed as:

Scoreðx%jDÞ ¼H½z%jx%;D(" hH½z%jx%;c;D(i
PðcjDÞ (1)

where H denotes entropy (a measure of uncertainty), z% is the possible pixel value at x%, D is the col-
lection of revealing locations and revealed pixel values that have been observed in the trial as above,

c is image category, and h)i denotes averaging over the two categories weighted by their posterior

probabilities, as computed by the ideal observer (for more details, see Materials and methods). This

expresses a trade-off between two terms. The first term encourages the selection of locations, x%,

where we have the most overall uncertainty about the pixel value, z%, while the second term prefers

locations for which our expected pixel value for each category is highly certain.
Figure 4A shows a sequence of fixations on a representative trial. On each fixation, the BAS score

is computed for all possible positions (grayscale map) based on all previous fixation locations (green

dots) and the pixel values revealed there. While the BAS algorithm would choose the position with

the highest BAS score as the next fixation location (blue crosses), the participant might choose a dif-

ferent, suboptimal, fixation location (yellow circles). Nevertheless, the informativeness of most of the

participant’s fixation locations were very high as expressed by their information-percentile values

(the percentage of putative fixation locations with lower BAS scores than the one chosen by the

participant).

Table 1. Maximum likelihood parameters of the model (see Materials and methods for details) with the best BIC score (see Table 2).

Participant Perception noise, sp Prior bias, D

Decision noise

Stimulus-dependent, b Stimulus-independent, k

1 0.5 0.58˚ 1.4 0.044

2 0.5 0.61˚ 1.9 0.12

3 0.3 0.54˚ 1.5 0.10

DOI: 10.7554/eLife.12215.010

Table 2. Model comparison results using Bayesian information criterion (BIC, lower is better). Each row is a different model using a dif-
ferent combination of included (+) and excluded (–) parameters (columns, see Materials and methods for details). Last column shows
BIC score relative to the BIC of the best model (number 4).

Model Perception noise, sp

Prior bias Decision noise

BICScale, a Offset, D Stimulus-dependent, b Stimulus-independent, k

1 + – – + – 160

2 + – – + + 139

3 + – + + – 58

4 + – + + + 0

5 + + – + – 105

6 + + – + + 102

DOI: 10.7554/eLife.12215.011
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We simulated eye movement patterns derived by BAS for the same images shown to our partici-
pants. In order to take into account basic biological constraints on the accuracy of eye movements,

we included saccadic variability and bias in the model based on measurements made independently

in a group of participants which took into account both the standard deviation and bias of saccades

both along and orthogonal (standard deviation only) to the desired saccade direction as a function

of desired amplitude (Figure 3—figure supplement 2). The predicted (mean-corrected) pattern of

eye movements closely matched those observed (Figure 3A, last two rows): they were positively cor-

related with participants’ eye movements for the same image type (Figure 3B, right, orange bars;

Figure 4. Example trial of the Bayesian active sensor (BAS) and its maximum entropy variant. (A) The operation of BAS in a representative trial for

saccades 1–8 and 14 (underlying image shown top left). For each fixation (left, panels), BAS computes a score across the image (gray scale,

Equation 1). This indicates the expected informativeness of each putative fixation location based on its current belief about the image type, expressed

as a posterior distribution (inset, lower left), which in turn is updated at each fixation by incorporating the new observation of the pixel value at that

fixated location. Crosses show the fixation locations with maximal score for each saccade, green dots show past fixation locations chosen by the

participant and yellow circle shows current fixation location. Percentage values (bottom right) show their information percentile values (the percentage

of putative fixation locations with lower BAS scores than the one chosen by the participant). Histogram on the right shows distribution of percentile

values across all participants, trials and fixations. (B) Predictions of the maximum entropy variant (the first term in Equation 1) as in (A). For saccades 1–
3, the fixation locations with maximal score (crosses) are not shown because the maxima comprise a continuous region near the edge of the image

instead of discrete points. Note that entropy can be maximal further (eg. fixation 4) or nearer the edges of the image (eg. fixation 1), depending on the

tradeoff between the two additive components defining it: the BAS score, which tends to be higher near revealing locations (panel A), and uncertainty

due to the stochasticity of the stimulus and perception noise, which tends to be greater away from revealing locations. Figure 4—figure supplement 1

shows two illustrative examples for this trade-off.

DOI: 10.7554/eLife.12215.012

The following figure supplement is available for figure 4:

Figure supplement 1. Trade-off between the two components making up total uncertainty underlying the maximum-entropy algorithm.

DOI: 10.7554/eLife.12215.013

Yang et al. eLife 2016;5:e12215. DOI: 10.7554/eLife.12215 8 of 22

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.12215.012
http://dx.doi.org/10.7554/eLife.12215.013
http://dx.doi.org/10.7554/eLife.12215


p<0.001 in all cases), but negatively correlated with those for different image types (Figure 3B,

right, purple bars; p<0.001 in all cases). These differences increased as a function of revealing num-

ber (Figure 3B, right, curves). Moreover, when we split participants’ trials into those in which they

made a correct or incorrect decision, the pattern of eye movements derived from the correct trials

correlated better with the BAS pattern than that derived from incorrect trials (Figure 3—figure sup-

plement 3, !correct ¼ 0:74, !incorrect ¼ 0:20, p<0.001 for the average participant), further suggesting

that following a BAS-like strategy was beneficial for performance.
For comparison, we also analyzed how well participants’ fixations could be accounted for by a

strategy using a variant of the score that only included the first term in Equation 1 and thus selected

locations with maximal entropy rather than maximal information gain. We found that this strategy

provided a substantially poorer fit to our eye movement data than the full BAS algorithm, as mea-

sured by the distribution of the scores corresponding to actual fixation locations (Figure 4B) and the

anti-correlations between predicted and actual revealing maps at 25 revealings (! = "0.62, "0.51,

"0.43; all p<0.001).

Fixation informativeness
In order to obtain a fixation-by-fixation measure of the informativeness of participants’ individual eye

movements, we used the ideal observer model to quantify the amount of information accumulated

about image category over subsequent revealings in a trial for different revealing strategies

(Figure 5A). This information-based measure is more robust than directly measuring distances

between optimal and actual scan paths because multiple locations are often (nearly) equally informa-

tive when planning the next saccade. For example, in the trial shown in Figure 4A, the BAS score

map was clearly multimodal for several fixations, and some of the participant’s fixation locations

Figure 5. Information gain as a function of revealing number for different strategies. (A) Cumulative information gain of an ideal observer (matched to

participants’ prior bias and perceptual noise) with different revealing strategies (black, green, and blue) and participants’ own revealings (red). Data are

represented as mean ! SEM across trials. Figure 5—figure supplement 1 shows a measure of efficiency extracted from these information curves

across sessions. (B) Information gains for three heuristic strategies (See text for details, and Materials and methods): posterior-independent & order-

dependent fixations (orange), posterior-dependent & order-independent fixations (purple), and posterior- & order-dependent fixations (brown). The

information gain curves for the three heuristics overlap in all cases. Participants’ active revealings (red lines, as in A) were 1.81 (95% CI, 1.68–1.94), 1.85

(95% CI, 1.72–1.99), and 1.92 (95% CI, 1.74–2.04) times more efficient in gathering information than these heuristics, respectively. Data are represented

as mean ! SEM across trials.

DOI: 10.7554/eLife.12215.014

The following figure supplement is available for figure 5:

Figure supplement 1. Relative efficiency across free-scan sessions.

DOI: 10.7554/eLife.12215.015
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were indeed distant from the corresponding locations that BAS would have chosen, yet their infor-

mativeness was generally very high. Therefore, categorization performance is better understood in

terms of information measures on the revealed locations rather than by the geometry of individual

scan paths, which has traditionally been used in previous studies (Najemnik and Geisler, 2005;

Renninger et al., 2007).
We compared the information efficiency of different revealing strategies by measuring the rela-

tive number of revealings required by them to gain the same amount of information. Participants’

active revealings (Figure 5A–B, red lines) were 2.93 (95% confidence interval [CI], 2.60–3.32) times

more efficient than random revealings (Figure 5A, blue lines). As a more stringent control than a

random strategy, we also simulated eye movement patterns for three heuristic strategies that repro-

duced different aspects of the statistics of participants’ actual eye movement patterns but lacked

the full closed-loop Bayesian interaction between belief updating and eye-movement selection (see

Materials and methods for details). We first used a feed-forward strategy, which retained order-

dependence, i.e. the way the statistics of revealing locations chosen by the participants depended

on revealing number, but ignored participants’ inferences about the category (Figure 5B, orange).

The second heuristic took into account the participant’s belief about the underlying image, but not

the revealing number (Figure 5B, purple). The third heuristic was a partial closed-loop strategy, that

thus respected both the belief- and order-dependence of revealings, but not the details of previous

revealings (Figure 5B, brown line). Notably, this strategy would be optimal for simpler stimuli and

tasks, such as visual search for a target, but not for our spatially correlated stimuli and task requiring

information integration across multiple locations. Participants’ revealings were 1.81–1.92 times more

efficient than these three heuristic strategies.
However, participants’ active revealings were less efficient by a factor of 2.48 (95% CI, 2.33–2.62)

than the information provided by revealings generated by the BAS algorithm with ‘idealized’ param-

eters: minimal perception noise (2–3 times lower than our participants’; see Materials and methods)

and no prior biases or saccadic inaccuracies (Figure 5A, black lines). Indeed, this efficiency in infor-

mation gathering was also reflected in our participants’ performance when they viewed revealings

generated by this ideal BAS (Figure 2C, black points). In this condition, participants only rescanned

the revealed locations for a short amount of time after the final revealing (average of 4.4 s), less than

in the active and passive random conditions, thus their increased efficiency could not be attributed

to longer rescanning times. The discrepancies between participants’ and BAS’s revealings may be

caused by participants employing an inefficient strategy to select their fixation locations, or, alterna-

tively, they may be due to more trivial factors upstream or downstream of the process responsible

for selecting the next fixation, such as noise and variability in perception or execution, respectively.

Importantly, when we computed the information gain provided by BAS when operating with partici-

pants’ prior biases, perceptual noise and the typical saccadic inaccuracies as described above, the

discrepancy between the informativeness of BAS-generated revealings compared to that of partici-

pants’ revealings was markedly reduced (Figure 5A, green lines, BAS/free-scan efficiency = 1.45,

95% CI, 1.37–1.53). This suggests that the central component of choosing where to fixate was

around 70% efficient in our participants, and a large component of suboptimality arose due to other

processes. To examine the role of learning in participants’ active sensing strategy, we computed the

relative efficiency of each of the free-scan sessions of our experiment, spanning multiple days, com-

pared to the final session (Figure 5—figure supplement 1). We found that efficiency remained sta-

ble over the whole course of the experiment, suggesting there was minimal, if any, learning required

in the free-scan task.

Discussion
Our results show that humans employ an active sensing strategy in deciding where to look in a high-

level pattern categorization task. In our task, participants’ patterns of eye movements were well pre-

dicted by a Bayes-optimal algorithm seeking to maximize information gain relevant to the task with

each individual eye movement. This Bayes optimal strategy involved finding the location in the scene

which when fixated was most likely to lead to the greatest reduction in categorization error, rather

than simply the location associated with the most uncertainty about pixel value.
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The efficiency of active sensing in human vision
Although our participants performed better when revealings were chosen by the BAS algorithm than

with their own scan paths, our results suggest that this suboptimality in participants’ performance

was to a large part due to prior biases, perception noise, and saccadic inaccuracies constraining the

selection of fixation locations rather than an inefficient active sensing strategy. In particular, our par-

ticipants’ eye movements were substantially more efficient than heuristic strategies that only

employed a subset of the elements of a fully closed-loop active sensing strategy, and were about

70% as efficient as the optimal active sensor that operated with the participants’ own prior bias, per-

ception noise, and saccadic inaccuracies. Importantly, this estimate does not conflate the inference

process with the selection process in that even if the participant’s inference is biased or inconsistent,

we can measure, given those beliefs, the extent to which they select fixation locations optimally. The

30% inefficiency we found may be due to unmodeled constraints in human eye movement strategies,

such as the biases for cardinal directions or fixating the centre of an image that were apparent in our

data (Figure 3A) and that may also be beneficial in natural environments (Tatler and Vincent, 2008;

2009). Such suboptimalities are conceptually different from those that we factored out using the

specific biases and noise included in the BAS model. The latter are suboptimalities that arise in the

execution of a planned saccade (as in Figure 3—figure supplement 2), while the former could be

suboptimalities of the planning itself. Therefore, as we were interested in the degree of (sub)opti-

mality of the planning component, we chose not to factor out potential biases for cardinal directions

or locations. Should such suboptimalities turn out to be part of the execution process, then our esti-

mate of 70% would become a lower bound on the efficiency of the planning process.
Our results contrast with recent studies suggesting that the pattern of eye movements do not fol-

low an active sensing strategy. In one study, using a simple object localization task, it was found that

the choice of fixation locations was close to random despite obvious learning of the underlying stim-

ulus statistics (Holm et al., 2012). In another study, using a simplified visual search task, participants’

eye movements were virtually unaffected by the configuration of the visual stimuli presented in the

trial (Morvan and Maloney, 2012). In contrast, we found that participants used both their prior

knowledge of stimulus statistics as well as evidence accumulated about the current visual scene to

guide their eye movements. We speculate that better performance in our case may be due to our

more naturalistic task, which involves the extraction of abstract latent features, revealing more typi-

cal processing of the sensorimotor system.

Relevance for natural vision
Although our task was designed to emulate many features of natural vision, there remain several dif-

ferences. First, our gaze-contingent display involved exposing small patches of the image at each fix-

ation whereas in natural vision information is available from the full visual field, albeit with

decreasing acuity away from the fovea. If participants’ selection process was aware of and actively

optimized for the changed field of vision in our task, the resulting eye movement patterns could be

different from those in natural vision. Nevertheless, the basic summary statistics of (macro-)saccades

in our task (average size and inter-saccadic intervals) were similar to those found in natural vision

(Hayhoe et al., 2003; Land and Tatler, 2009), and there was a lack of adaptation to the task over

the course of several days of free-scan sessions (Figure 5—figure supplement 1). These seem to

suggest, at least indirectly, that participants did not depart dramatically from their natural eye move-

ment strategies.
Second, our task focuses on the voluntary component of eye movements, that is the scan paths

of fixations, rather than the more involuntary processes of micro-saccades and drift (Rolfs, 2009;

Ko et al., 2010; Rucci et al., 2007; Poletti et al., 2013; Kuang et al., 2012), which did not trigger

new revealings. Importantly, in our task these involuntary processes are likely to be used for extract-

ing information within each revealed patch, whereas high-level categorization required macro-sac-

cades. This is because these involuntary processes cover an area with a standard deviation (SD) on

the order of 0.22˚ (over the course of each fixation; Rolfs, 2009), which is similar to our Gaussian

apertures (SD of 0.18˚), whereas the smallest length scale of our stimuli (0.91˚) is 4 times larger. How-

ever, it is possible that in natural scenes with finer structure, micro-saccades and drift may contribute

more to abstract feature extraction.
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Third, our stimuli set had strictly stationary statistics. This is an approximation to natural image
statistics that are often assumed to be spatially stationary on average (eg. Field, 1987) but usually

include local non-stationarities (eg. different objects with different characteristic spatial frequencies).

Nevertheless, our stimuli were more naturalistic than many of the stimuli used in active sensing stud-

ies of visual search (eg. simple 1/f noise) while still allowing a rigorous control and measurement of

the amount of high-level category information available at any potential revealing location which

would not have been possible with natural scenes.
Finally, natural vision works under time constraints. Our task limited the number of revealings in

each trial rather than the time, although the temporal aspects of the eye movements (inter-saccadic

intervals) were similar to eye movements with natural scenes. We also showed in a control experi-

ment that the additional time allowed for rescanning the revealed locations did not affect the initial

scanning strategy.
A challenge for future studies will be to employ visual tasks that are more naturalistic in these

respects while still retaining our ability to quantify the task-relevant information available to partici-

pants at any point in a trial. It may well be that participants are more efficient in such naturalistic set-

tings than the 70% we found in our task.

Relation to earlier work
Our approach makes several important contributions. First, by using a gaze-contingent display we

were able to isolate the top-down strategies of eye movement selection, thereby complementing

studies which examined the influence of low-level visual features and salience (Itti and Koch, 2000;

Wismeijer and Gegenfurtner, 2012) on eye movement selection. In addition, our task focuses on

integrating low-level visual information into an abstract category thus complementing studies that

examine the effect of target value (Navalpakkam et al., 2010; Krajbich et al., 2010;

Markowitz et al., 2011; Schutz et al., 2012) or more cognitive tasks that use eye movement

(Nelson and Cottrell, 2007) or button-pressing for information search (Castro et al., 2009;

Gureckis and Markant, 2009; Borji and Itti, 2013). Some of these studies used a similar Bayesian

formalism to obtain the active learning strategies specific to their tasks and showed that humans

perform active learning when given the opportunity to consciously deliberate from which location in

a scene they should gather information next. In contrast, our work shows that high-efficiency active

sensing is a natural strategy for eye movements that humans adopt without overt deliberation, as

evidenced by the inter-saccadic intervals matching naturalistic tasks and the fact that our participants

reached near-asymptotic efficiency already in the first session of our task.
Second, by using a pattern categorization task we could ensure that no single location was espe-

cially informative but that the task required an integration of information from multiple locations

both to select the next eye movement and to solve the task, and specifically that a closed-loop strat-

egy was necessary for solving the task efficiently. This is in contrast with studies that attempted to

quantify the general informativeness of single locations in a scene (Gosselin and Schyns, 2001), and

showed that they are the target of fixations humans tend to choose in general (Peterson and Eck-

stein, 2012; Toscani et al., 2013; Chukoskie et al., 2013), or visual search in which, by the nature

of the task, the target location is fully informative by itself (Najemnik and Geisler, 2005). As such,

most previous studies have not addressed the important interplay between information gathering

and fixation selection characteristic of naturalistic active sensing: that, in general, the most informa-

tive location is ever-changing, dependent on the history of fixations one has already performed.
Third, in contrast to active sensing for simple visual search (Najemnik and Geisler, 2005;

Navalpakkam et al., 2010; Morvan and Maloney, 2012), our formalism extends the range of active

sensing to tasks which have arbitrary, not necessarily spatial, latent features (such as categories). In

particular, it provides the first fixation-by-fixation analysis of information gathering under active eye

movements by carefully matching our observer model to participants’ performance. As a result, for

the first time, we were able to dissociate the contributions of the eye-movement selection process

from those of perceptual, motor, and decision processes, identify predominant sources of apparent

sub-optimality in active sensing, and quantify the efficiency of choosing each individual fixation

throughout scanning a whole scene. Taken together, these features make our approach amenable to

multiple tasks in different perceptual domains (Kleinfeld et al., 2006), as well as high-level cognitive

tasks such as estimating the age or socio-economic status of people in a scene (Yarbus, 1967).
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Materials and methods

Participants
Three naive participants (aged 25–35 years, none of them were authors or neuroscientists) took part

in the experiment. All participants were neurologically healthy, had normal or corrected to normal

vision and gave their informed consent before participating. The study was approved by the institu-

tional ethics committee. Each experiment took approximately 12 hr across 6 days (2 hr per day). As

this experiment was particularly laborious we focus on within-participant analysis.

Experimental apparatus and setup
Participants sat 42 cm in front of a 17” Sony Multiscan G200 FD Trinitron CRT monitor (32-bit color,

1024x768 resolution, 100 Hz refresh rate). An EyeLink 1000 eye tracker was used to track the partici-

pant’s right eye position at 1000 Hz. A chin and forehead rest was used to stabilize the head.

Stimuli
Stimuli were generated such that the value of a pixel, z, depended on its two-dimensional location,

x, through a function z ¼ f ðxÞ sampled from a two-dimensional Gaussian process (Rasmussen and

Williams, 2006) with zero mean and covariance function K"ð); )Þ. The covariance function was

squared-exponential and it was parameterized by " ¼ flh; lvg setting the image pattern’s horizontal

and vertical correlation length scales, with the variance set to unity, such that the covariance of the

pixel values at two positions, x and x
0
(each two-dimensional), was:

K" x; x0ð Þ ¼ e
"1

2ðx"x
0
ÞT

l2h 0
0 l2v

! ""1

ðx"x
0
Þ

(2)

For the patchy (PA), stripy horizontal (SH), and stripy vertical (SV) pattern types the hyperpara-
meters were "PA ¼ f1:39*; 1:39*g, "SH ¼ f4:63*; 0:91*g, and "SV ¼ f0:91*; 4:63*g, respectively. Function

values (z) in the range "4 to 4 were mapped to image pixel colors so that the extremes corre-

sponded to pure red (RGB value [1, 0, 0]) and blue ([0, 0, 1]), with intermediate values being linearly

interpolated in RGB space. Functions which had values outside ["4, 4] were discarded and a new

function was generated. The images were sampled over a grid of 77+77 locations subtending 27:8*

at the eye in the horizontal and vertical dimensions and then supersampled, using 2D splines, up to

a resolution of 770+770 pixels (this allowed images to be generated rapidly without compromising

visual appearance). On each trial, a pattern category c, that was patchy (P) or stripy (S), was chosen

with equal probability and if the stripy category was chosen then a horizontal or vertical pattern type

was chosen with equal probability. Having two different types within the stripy pattern category

ensured that the optimal scan path depended on the image (otherwise, always scanning in one

direction where the length scales were different would be optimal).

Task
The task on each trial was for participants to determine whether a pattern displayed on the monitor

was patchy or stripy (irrespective of whether it was vertical or horizontal) under different experimen-

tal conditions. The experiment consisted of four conditions: training, free-scan familiarization, free-

scan, and passive revealing.

Training (8 sessions + 40 trials)
Participants triggered the start of each trial by fixating (within 1.5˚ for 500 ms) a cross centered on

the screen, at which point the cross disappeared. An image was displayed centered on the location

of the fixation cross, and participants had to decide whether the image was patchy or stripy. They

were allowed to scan the image freely for up to 10 s and make their decision by fixating (within 2.8˚
for 800 ms) on one of the two choice letters, P or S, which were displayed to the left and right of the

displayed image, respectively. Participants received audio feedback as to the correctness of their

choice. Twenty images from each category were presented in a randomized order. The training ses-

sions ensured that participants could learn the statistics of the image patterns. Categorization per-

formance was perfect in training sessions for all participants.
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Free-scan familiarization (5 sessions + 40 trials)
Each trial started with participants fixating a center cross. A randomly generated image from one of

the categories was then displayed but initially completely obscured by a black mask. Participants

could freely scan the display, and wherever they fixated, the underlying image was revealed by

unmasking a small aperture at the fixation location. This was achieved by revealing an isotropic

Gaussian region with standard deviation 0.18˚ at the fixation location, with the values of the Gauss-

ian used to interpolate linearly between complete transparency (alpha=0) at the maximum of the

Gaussian and black (alpha=1) where the value of the Gaussian is 0. A new fixation was detected, and

hence a new revealing triggered, when the following three criteria were met: 1) a saccade had

occurred since the last fixation as determined by eye speed greater than 59˚ s"1; 2) the displace-

ment from the previous fixation was greater than 0.59˚; and 3) the standard deviation of the eye

position was less than 0.28˚ for the last 100 ms. These parameters were based on pilot experiments

with the aim of making the revealings in the free-scan session feel natural so that each location

viewed was revealed and spurious locations were not revealed. Participants were required to make

25 fixations before making their decision. After the 25 revealings, the category choices appeared (P

vs. S) and participants had 60 s to choose a category with the revealed locations remaining on the

display. Upon answering, participants were shown the full image with audio feedback. All partici-

pants achieved an average performance of 70% accuracy or higher.

Free-scan (6 sessions + 100 trials)
Free-scan trials were exactly the same as free-scan familiarization trials except that the number of

revealings across trials was chosen randomly on each trial from 5 to 25 in steps of 5 (balanced) and

was a priori unknown to the participants. The choice letters, P and S, appeared after the given num-

ber of revealings and no new revealings occurred after this point. The unknown, random stopping

number of revealings served to encourage participants to be greedy in their information seeking.

Passive revealing (8 sessions + 100 trials)
This session was the same as the free-scan session except that the revealing locations were pre-

determined by an algorithm independent of participant’s eye movements and sequentially appeared

at intervals of 400 ms (which was about the average interval between consecutive fixations in the

free scan experiment: 408 ms, which in turn was very similar to the inter-saccadic intervals measured

under natural viewing conditions in everyday tasks; Hayhoe et al., 2003; Land and Tatler, 2009).

Participants were instructed to follow the revealings as much as possible and were allowed to scan

the scene after all revealings had appeared until they made their category decision. The algorithm

followed one of three strategies randomly chosen:

1. Random: revealing locations were drawn from a scene-centered isotropic Gaussian with stan-
dard deviation 9.27˚. For comparison, participants’ revealing locations in the free-scan condi-
tion had an average location that was 0.05˚ from the center of the scene and had a standard
deviation 4.50˚. Revealing locations that fell outside the image were resampled;

2. Ideal BAS: revealing locations were generated by the BAS algorithm (see below). For establish-
ing an upper bound on the informativeness of the optimal revealing locations, the algorithm
was allowed to access the displayed, as opposed to perception noise-corrupted pixel values,
and did not include prior biases and saccadic inaccuracies (see below).

3. Anti-BAS: revealing locations were generated by the BAS algorithm as above but as if it was
observing a different image than the real one, which belonged to a wrong type. For example,
if the real image belonged to type SH, the revealing locations were generated based on an
image from type PA or SV (randomly chosen).

We mixed the BAS and anti-BAS trials to ensure participants could not use the pattern of reveal-
ing locations (independent of pixel values) to infer the category of the underlying image. The experi-

ment included 8 passive revealing sessions with a total of 200, 200, and 400 trials from strategy 1, 2,

and 3, respectively. The trials were first randomly mixed then divided into 8 sessions.
The eye tracker was calibrated before each session (25-point calibration for the free-scan condi-

tion and 9-point calibration for the passive-revealing conditions). Drift correction was performed at

the start of each trial after fixation on the center cross was achieved. Re-calibration was performed
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whenever participants reported that the revealing locations did not match where they fixated, when-

ever they could not trigger the start of a trial, or make their category choice by fixating.
Participants ran using the following schedule: day one, 3 training sessions intermixed with 5 free-

scan familiarization sessions; day two and three, 1 training session and 3 free-scan sessions each; day

four to six, 1 training session and 2 or 3 passive revealing sessions each. All the free-scan sessions

came before any passive revealing sessions so as to avoid influencing participants’ choice of eye

movements by our choice of passive revealing strategies.
As we wished to compare the active strategy with passive revealing we allowed participants to

rescan the revealed locations after the final revealing but before making a decision. This was critical

as in the passive revealing conditions, although participants may detect and follow the revealings,

because they are small and dispersed, they need to scan the scene to find and view them all. There-

fore, the reason for allowing additional time after the final revealing was so as to make sure they had

a chance to extract as much information as they liked from the revealed locations (locations and pixel

values). In order to make the conditions directly comparable, we followed the same procedure in the

active condition. Thus, allowing a rescanning period was the only way we could make a fair compari-

son across conditions using our gaze contingent design, which in turn allowed fine control over the

information participants could obtain by eye movements.
Crucially, our key interest was in where participants chose to fixate during the initial revealing

period and not in the perception model. During the active condition, all the selection happened

prior to the rescanning phase and participants did not know how many saccades they would be

allowed so they still needed to be efficient in choosing revealing locations even if they could rescan

them later. Therefore, as we were analyzing the initial scanning, the final rescanning simply equalized

the information that could be extracted from each revealing for all conditions but it was unlikely to

influence the initial selection. Although, it is theoretically possible that participants adopted a differ-

ent eye movement strategy knowing they could freely re-visit already revealed locations, the rescan-

ning control (described below) suggests that this was not the case (Figure 3—figure supplement 1).
To examine whether rescanning time had an effect on performance, we fit each participants

choice accuracy as a logistic function (bounded between 0.5 and 1) of rescanning time. We allowed

different shifts per condition (active, passive random, passive BAS) but the same slope parameter

across conditions.

No-rescanning control
To directly examine whether the rescanning period allowed after the final revealing affected partici-

pants scanning strategy, we performed a control experiment with three additional naive participants.

These participants performed the training, free-scan familiarization, and free-scan sessions as in the

original experiment except that no rescanning after the final revealing was allowed. That is all reveal-

ings disappeared (i.e. display returned to a black screen) 350 ms after the saccade away from the

final revealing and participants were required to indicate their choice.

The ideal observer model of the task
The ideal observer maintains and continually (after each observation) updates a posterior distribution

over categories, c 2 fP; Sg, given knowledge of the parameters defining each image type,

" 2 f"PA; "SV; "SHg, and data, D ¼ fz; xg, which is the set of perceived pixel values z ¼ fz1; z2. . . zLg

at the L locations x ¼ fx1; x2. . . xLg revealed in the trial so far:

P c¼PjDð Þ ¼
PðDj"PAÞ

PðDj"PAÞþ 1
2PðDj"SHÞþ

1
2PðDj"SV Þ

(3)

P c¼ SjDð Þ ¼ 1"Pðc¼PjDÞ (4)

P Dj"ð Þ ¼N

#

z; 0;K"ðx; xÞþs2
pI

$

(5)

where s2
p is the variance of the participant’s (Gaussian) perceptual noise on the pixel value, and

K"ðx; x
0
Þ is a matrix with element ði; jÞ being K"ðxi; x

0

jÞ (Equation 2). Note that the length scales of

the three pattern types as assumed by the observer, ", need not necessarily be the same as those

actually used to generate the images, and indeed we explore below variants of the model that differ
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in their assumptions about these length scales. For simplicity, the ideal observer model assumes a

fixed extraction of information from each revealing and therefore does not include temporal factors

such as fixation durations (i.e. perception noise in Equation 5 is constant).

The Bayesian active sensor model of eye movements
The Bayesian active sensor (BAS) algorithm computes a score, the expected reduction in entropy of

the distribution over categories as a function of a possible next revealing location, x%, and chooses

the next fixation to be at the location with the highest score. The score is defined as

Scoreðx%jDÞ ¼H½cjD(" hH½cjz%;x%;D(i
Pðz%jx%;DÞ (6)

where z% is a possible (and as yet, unobserved) pixel value at x%, and H½)( denotes entropy in bits.
Using the insight that the BAS score formally expresses the mutual information between c and z%

(for the given x%), Equation 6 can be rewritten in a different form that is computationally far more

convenient, as it does not require expensive posterior updates for a continuum of imaginary data,

z%, to compute Pðcjz%; x%;DÞ for the second term (Houlsby et al., 2011):

Scoreðx%jDÞ ¼H½z%jx%;D(" hH½z%jx%;c;D(i
PðcjDÞ (7)

This form (equivalent to Equation 1) is also more plausible psychologically as it is easily approxi-
mated by simple mental simulation for a few hypotheses sampled from the current posterior. Note

that maximizing just the first term would be equivalent to “maximum entropy sampling”

(Sebastiani and Wynn, 2000) which is suboptimal in general, and in the context of our task would

be similar to simple “inhibition of return” which does not account well for participants’ fixations

(Figure 4B). The two distributions needed for evaluating Equation 7 are the current posterior over

categories, PðcjDÞ, and the predictive distribution of the pixel value at a location for a category,

Pðz%jx%; c;DÞ. (Note that the predictive distribution in the first term can also be computed using

these two distributions: Pðz%jx%;DÞ ¼ hPðz%jx%; c;DÞi
PðcjDÞ.) The category posterior is given by Equa-

tion 3-5 and the category-specific predictive distribution is (Rasmussen and Williams, 2006):

P z%jx%;c¼P;Dð Þ ¼ Pðz%jx%;"PA;DÞ (8)

P z%jx%;c¼ S;Dð Þ ¼
P Dj"SVð Þ

P Dj"SVð ÞþP Dj"SHð Þ
P z%jx%;"SV;Dð Þþ

P Dj"SHð Þ

P Dj"SVð ÞþP Dj"SHð Þ
P z%jx%;"SH;Dð Þ (9)

with

Pðz%jx%;";DÞ ¼N

#

z%;K"ðx
%; xÞ ½K"ðx; xÞþs2

pI(
"1
z;

K"ðx
%;x%Þ"K"ðx

%;xÞ½K"ðx; xÞþs2
pI(

"1
K"ðx; x

%Þþs2
p

$ (10)

For all simulations, we computed the BAS score on a 110+110 grid of x% that covered the image.
The entropies of the predictive distributions (which are mixtures of Gaussians) in Equation 7 were

approximated by their Jensen lower bound for efficiency (Huber et al., 2008).
Importantly, at least in principle, the ideal observer and BAS algorithms can be generalised to

more complex stimuli as long as their statistics are known and can be expressed as

Pðz1; ) ) ); znjx1; ) ) ); xn; cÞ.

Saccadic variability and bias
Due to the gaze-contingent design of our experiment, most saccades were made towards locations

without any visible target. Saccades are known to be variable and biased, and to incorporate this

variability and bias into our model we measured saccadic variability and bias in an independent

experiment with 6 participants (including two from the main experiment) under similar conditions to

those in the free-scan session of the main experiment. Although in the main experiment participants

chose the location they wished to saccade to, to reliably measure saccadic variability and bias we

needed to know the target of the saccade but not display it. Therefore we first trained participants

on the locations of two saccadic targets and that on each trial the color of a stimulus shown at the

fixation point indicated to which of these they needed to saccade. The two targets were at equal

eccentricity from the fixation point, one to the right and one above it. On each training trial,
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participants first fixated a central fixation cross. Then two isotropic Gaussian patches (SD 0.18˚ as in
the main experiment) appeared, one at the fixation location and one at one of the two target loca-
tions. The color of the fixation patch determined where the eccentric target was, either to the right
(red) or above (blue), and participants were informed that the relation between the fixation color
and the target direction was fixed throughout the experiment. To ensure that participants paid
attention to the target, they were asked to report the color of the eccentric target which could either
be red or blue. Note that this task by itself did not necessarily require them to saccade to the target,
to avoid overtraining on particular saccades, but ensured that they developed a strong association
between the color of the central fixation stimulus and the location of the target on that trial, such
that in the next phase we could instruct them to saccade to a particular target without showing it. A
training session of 40 trials was performed for each target eccentricity tested (1.39, 2.78, 5.56 and

8.34˚ in this order) with each session followed by a test session of 100 trials with the same
eccentricity.

In the test sessions, only the fixation patch appeared and its color determined which target the
participant should make an eye movement to. As in the free-scan sessions, a patch was revealed
wherever the participant fixated, and their task was to report the target’s color. However, as this first
eye movement was often inaccurate (see below) it did not necessarily reveal the target which
needed to be reported. Thus, to motivate participants by making the task feasible, they were
allowed to make four additional eye movements, leading to more revealings, before reporting the
color of the target. (Although they were allowed 5 revealings, they were instructed to be as accurate
as possible with their first eye movement.) The entire image was then shown as feedback.

To estimate saccadic variability and bias we used only the first saccade after fixation. We

removed trials in which participants did not accurately maintain fixation (drift of >0.56˚) or where
they clearly mis-directed their saccade (saccade was closer to the non-cued target). We calculated
the bias and standard deviation (robust estimate from the median absolute deviation) both along
(tangential) and orthogonal (SD only) to the direction of the target. We fit the bias and SD as a lin-
ear function of target distance for both the tangential and orthogonal components for each partici-
pant (Figure 3—figure supplement 2). We averaged the model parameters across the
participants and used these values to corrupt the desired saccade locations in the BAS
simulations (unless otherwise noted).

Model parameters and data fitting
To match empirical data collected from our participants, we included perception noise, decision
noise, and potential prior biases in the ideal observer model.

. To model perception noise, we added Gaussian noise (SD sp) to the displayed pixel values to
obtain z, which was either fit to individual participants’ categorization data (see below), or set
at sp ¼ 0:17 for computing the BAS score (in Equations 5 and 10) when determining ideal
BAS revealings in passive revealing sessions. The ideal observer model then received these
noisy pixel values as input instead of the pixel values actually shown to the participants.

. To incorporate decision noise, the category posterior of Equation 3-4 was transformed by a
softmax function to obtain the probability of choosing the patchy category:

P̂ðc¼PjDÞ ¼ ð1"kÞ
1

1þ e"b LPRðDÞ
þ
k

2
(11)

where k describes the stimulus-independent decision noise and can be interpreted as the

lapse rate, b is the stimulus-dependent decision noise (larger values of b result in more deter-

ministic behavior and lower values in more random behavior), and LPRðDÞ ¼ log Pðc¼PjDÞ
Pðc¼SjDÞ is the

log posterior ratio under the ideal observer model (Equation 3–4).

. To model prior biases, i.e. imperfect knowledge of the stimulus statistics, we considered three
qualitatively different ways in which participants could misrepresent the length scales used to
generate the stimuli (6 length scales for three types of stimulus and 2 directions):
1. no prior biases, i.e. the length scales used by the model were identical to those actually

used to generate the stimuli;
2. a uniform scaling of all length scales relative to their true values, a;
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3. a fixed offset of all length scales from their true values, D;
Thus, the last two models has a single parameter controlling the relation between the
extent of misrepresentation.

For a systematic model comparison, we constructed a set of models which all included perception
noise (sp) and stimulus-dependent decision noise (b) and differed in whether they also included stim-

ulus-independent decision noise (k) and which of the three prior biases they had (none, a, or D). This

gave six models and for each we fit all the free parameters on the combined category choice data

(from both the free-scan and passive revealing conditions) of each participant using maximum

likelihood.
In order to fit the models to empirical data, we needed to take into account that the ideal

observer was conditioned on the perceived pixel values, which were noisy versions of the pixel val-

ues actually displayed (corrupted by perception noise) and were thus unknown to us. Thus, we inte-

grated out the unknown perceived pixel values in order to compute the actual choice probabilities

predicted by the model (Houlsby et al., 2013). This was approximated by a Monte Carlo integral,

by simulating each trial 500 times, drawing random samples of the perceived pixel values given the

displayed pixel values from the perceptual noise distribution for each revealing. In each simulated

trial, we then computed the probability of a participant’s choice according to Equation 11, and

finally averaged over simulations to obtain the expected probability of each response category in

that trial. For optimizing the values of sp and the parameters for prior bias, a and D, we conducted a

grid search with a resolution 0:1, 0:1, and 0:01*, respectively. For each setting of these parameters,

we optimized b and k (when used) using gradient-based search so that all the parameters were

jointly optimized. Table 1 shows the best fit parameters. We used the Bayesian information criterion

(computed across all participants) to compare the models by controlling for their differing number

of free parameters and chose the best one (Table 2).
We used the BAS algorithm to predict the pattern of eye movements for each participant individ-

ually given the values of sp and D fitted to their categorization choices and the measured saccadic

inaccuracies. This meant that once we fitted categorization choices, eye movements were predicted

without any further tuning of parameters. Note that b and k affected only choice probabilities in the

categorization decision process, not the eye-movement selection process described by Equation 1.

Revealing densities
As the statistics of stimuli were translationally invariant, the critical features of the optimal solution

was the relative locations of the revealing to each other. Therefore, for each trial we first shifted all

the revealing locations in that trial equally so that their mean (centre of mass) was located at the cen-

tre of the image, thereby removing the variability caused by which part of the image the participants

explored in that trial, which was irrelevant to optimality. We then computed the mean density maps

by assigning the revealing locations to centers of a 770+770 grid of bins (the resolution of the

images), normalizing the counts, and smoothing the distribution with an isotropic Gaussian filter

(std. of 20 bins, ie. ~ 0:73*). For a balanced comparison, we computed densities as if each trial had

25 revealings and the three underlying patterns were chosen with equal probability. To achieve this

we multiplied the count for the nth revealings by both the relative frequency of first revealings to nth

revealings and by the inverse of the frequency of the image type. For each participant, we computed

the mean density map across all trials (Figure 3A first column) and the mean-corrected density map

for each underlying image type (Figure 3A last three columns) by removing the mean from those

averaged for each image type. The density maps for BAS were generated with simulations that used

the same trials (image and number of revealings) that the participants performed. We repeated the

simulation of each trial 10 times to obtain a reliable Monte Carlo estimate of the BAS revealing den-

sity maps marginalized over the unknown perceived pixel values.

Correlation analysis
To examine whether the participants’ pattern of eye movements depended on the underlying image,

and hence what they saw at the revealing locations, we compared correlations between mean-cor-

rected density maps within and across image types for each participant. In computing the correlation

as a function of revealing number, we kept the number of samples used to construct the maps con-

stant. This number of samples was chosen to be the maximum number that still allowed the image
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type and revealing number to be sampled with equal probability without replacement. To increase

the sample size for all revealings we only examined revealings from 5 onwards. For the bar plots, we

used about 3 times the number of samples, but weighted each revealing so that the maps were still

effectively constructed with an equal number of samples from each revealing number.
To obtain statistics of the correlations, we split the revealing locations for an image type ran-

domly into two data sets of equal size. This produced 6 different data sets (two for each image

type). For within-type correlations, we computed the three correlations (using a Gaussian smoothing

kernel with 1:5* SD) between the mean-corrected maps of the same image types, and averaged

these three correlations across the three image types to obtain a single within-type correlation value.

Similarly, for across-type correlations, we computed the six correlations between the mean-corrected

maps of different image types (across the two different halves of the split), and averaged these six

correlations to obtain a single across-type correlation value. We repeated this procedure 1000 times,

using a different random split of the data each time, to obtain the means, SD, and 95% confidence

intervals (Figure 3B).
We also performed the same analysis on the three participants’ pooled data, treating the ensem-

ble as data from an ’average’ participant. Here the data sets used to calculate the density maps

were thus three times larger than those for the individuals. These results together are shown as par-

ticipant-self correlations (Figure 3B, left). We applied the same approach to compute participant-

BAS correlations. For this, participant- as well as BAS-generated revealing location data were each

randomly split in half (as above), and correlations were always computed between a participant- and

a BAS-generated data set (Figure 3B, right).
The correlation between the eye movement patterns derived from correct / incorrect trials and

that from BAS was calculated in the same way described above, but only for the ’average’ partici-

pant as the number of incorrect trials was limited. The p-value reported is the fraction of boot-

strapped samples that satisfied the condition !correct - !incorrect.

Information gain and efficiency
According to the ideal observer, at any point in a trial, the information gain associated with the set

of revealings made thus far is defined as 1"H½cjD(. As described above (Model parameters and

data fitting), since we only knew the displayed but not the perceived pixel values, we used Monte

Carlo integration to marginalize out the unknown perceived pixel values. To do this, we simulated

each experiment 200 times using the parameters of the best fit model, drawing new samples of per-

ceived values for the chosen revealing locations given the displayed pixel values, and then averaged

the information gains across runs and trials. Figure 5A shows the average information gain as a func-

tion of revealing number across the 200 simulations with the average across-trial SEM for each

revealing strategy. To characterize the efficiency of each strategy, s, we fit the information vs. reveal-

ing number curves from each simulation obtained with the above analysis using a cumulative Weibull

distribution: Is nð Þ ¼ 1" exp " n
as= Þb

$##

, where n is the revealing number, b is a shape parameter

shared across strategies (free-scan, passive random, passive ideal BAS, and simulated BAS), and as is

a strategy-specific scale parameter, which captures the overall efficiency of the strategy. As a relative

measure of efficiency for comparing any two strategies, we computed the ratio of their as, and

obtained 95% confidence intervals by using the 200 simulations as bootstrap samples.

Heuristics
To address whether a heuristic algorithm could account for participants’ eye movement patterns, we

computed the information gains achieved using several heuristics.

1. Posterior-independent & order-dependent fixations (Figure 5B, orange). For each partici-
pant, the fixation location on the ith revealing was obtained by sampling (with replacement)
from fixation locations pooled across their ith revealing of all free-scan trials, regardless of the
underlying image pattern and the ensuing posterior. This feed-forward strategy respects the
participant’s average order-dependent fixation map, but is otherwise based on a set of pre-
determined fixation locations rather than on what was observed about the actual scene.

2. Posterior-dependent & order-independent fixations (Figure 5B, purple). For each partici-
pant, the fixation location on the ith revealing was obtained by first computing the likelihood
P Dj"ð Þ, where D included the i revealing locations and pixel values observed up to this
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revealing, finding the type that had the maximum posterior probability, and then sampling
from the fixation locations pooled across trials with that image type as the underlying image
pattern. This strategy uses the observations only indirectly, through the posterior, but does
not otherwise take into account previous fixation locations and the corresponding pixel values
for evaluating the informativeness of potential new revealing locations.

3. Posterior- & order-dependent fixations (Figure 5B, brown). This combined order-depen-
dence, as in the 1st heuristic, with posterior-dependence, as in the 2nd, but still did not take
into account previous fixation locations and the corresponding pixel values. While this strategy
would be optimal for simpler stimuli, in which pixels are independent for each image category,
or simpler tasks, such as visual search, in which knowledge of the task-relevant posterior (eg.
target location) is sufficient for optimal action, it is suboptimal with the kind of naturalistic stim-
uli and task we used.
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