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A. Limitations of the data

Although the microarray experiments analyzed here provide high-quality data, artifacts

and limitations should be addressed. The brief description of the experiment below follows

Alvino et al 2007 and Raghuraman et al 2001. The data from McCune et al 2008 were

obtained using similar procedures.

Budding yeast cells were grown in an isotopically dense (13C, 15N) medium for a few

generations at 23 ◦C and then synchronized at G1 by exposure to alpha mating pheromone.

The culture was then resuspended in an isotopically light (12C, 14N) medium and further

synchronized at the G1/S boundary by incubation at 37 ◦C, the restrictive temperature for

cdc7-1. When 93% of the cells were budded, the temperature was lowered to the permissive

temperature 23 ◦C to allow cells to enter S phase. Samples were collected throughout S

phase. The DNA of the collected cells was first fragmented with a restriction enzyme (Eco

RI). Dense and light DNA were then separated by ultracentrifugation, separately labeled

with Cy3-dUTP and Cy5-dUTP, and hybridized to a open-reading-frame microarray. The

intensities, after normalization by the mass of the sample, were used to calculate the fraction

of replication (Alvino et al, 2007).

A limitation of the data is its resolution. The data covers roughly the entire genome at

time points from 10 to 45 minutes, as measured from the release of the cdc7-1 block. It

comprises 8 time points (with 5-minute temporal resolution) and, on average, 6149 position

points for each time point (spatial resolution = genome size / number of points ≈ 12000 kb

/ 6149 ≈ 2 kb). The average spatial resolution of 2 kb cannot resolve every single origin. In

our fits, the elimination of origins that are less than 5 kb apart from their neighbors reflects

this limitation. Given that the fork speed v ≈ 2 kb/min, a typical origin can cover roughly

60 kb (average t1/2 × v) of DNA. Thus, treating all origins in the region xi ± 2.5 kb as an

effective origin at xi would not change the replication fraction profiles. The average error

on the xi is 0.7 kb for the SM and 1.1 kb for the MIM.

The exact number of effective origins that we found depends on the elimination criteria

(see Methods), as some origins made only marginal contributions to the replication profiles.

The parameters of these origins have relatively large errors (tw± 50% for the SM; n± 30%

for the MIM). They were also sensitive to the form of data used in the fit (e.g., smoothed

data versus raw; Supplementary Material Section F). The marginal origins constitute about
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10% of all origins identified. Since they do not affect the replication program significantly

(replication profile at 30 min changes by less than 5%), uncertainties about their numbers

and parameters do not change the results presented above.

Another issue is that the data does not cover the entire range of possible replication

fraction (0–100%); roughly all the data spreads between 10–90% (Supp. Fig. 1). One con-

tribution to this artifact is the inability to cleanly separate the replicated fragments from

the unreplicated. Alvino et al reported that small fragments and A-T rich sequences of

unreplicated DNA are less dense and are physically similar to the replicated fragments.

This leads to non-zero replication signals everywhere, even when no DNA is replicated. To

understand the upper bound of 90%, we note that Alvino et al report that, for each time

point, they normalized the microarray signals by the ratio between the total signal and the

DNA fragments’ total mass (Alvino et al, 2007). Although the normalization corrects for

large amounts of signal drifts and scaling, we suspect that the rescaling is not perfect. To

compensate for the reduced range of replication, we introduced a global background and a

constant scaling factor for each time point as (genome-wide) parameters. Since these pa-

rameters are genome wide, they affect all origins simultaneously. However, the relationships

between the local SM parameters t1/2 and tw are not significantly affected. Similarly, the

relative values of the MIM local parameter n are also not significantly affected.

In the microarray experiment, the progress of replication is monitored with flow cytometry

(Alvino et al, 2007). The flow-cytometry data shows that DNA content stopped increasing

after 60±10 minutes into S phase (Alvino et al, 2007; Fig. 1A). We therefore estimate S

phase to be 60 min. With our definition of potential efficiency (Φ(tend)), a change in tend

changes the potential efficiency of every origin. (Potential efficiencies as a function of tend

can be estimated from Fig. 3B.) Still, the trend that later-firing origins have lower potential

efficiency remains valid, as is the trend between observed and potential efficiency shown in

Fig. 4C.
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B. Statistical details of the fits

Here, we discuss in more detail the various fits described in the main text. We start by

recalling the definition of the χ2 statistic:

χ2 =

Nd∑
i=1

(fi − di)2

σ2
i

, (1)

where Nd is the number of data points, fi is the model value, di is the data (measurement)

value, and σi is the standard deviation of the measurement di. Use of the χ2 statistic (least-

squares fitting) asserts that statistical fluctuations affect each data point di independently

and that the fluctuations are Gaussian distributed, with mean 0 and standard deviation σi,

which we denote N (0, σi). As we shall see, a detailed examination of the fluctuations shows

that the assumptions for least-squares fits are not strictly met.

Ideally, the noise distribution for each data point would be estimated by repeating the

experiment a large number of times. McCune et al repeated their experiment once, meaning

that there are just two measurements of each data point. To examine the distribution

of fluctuations, we considered the distribution of the differences between the experiments,

calculated data point by data point. (Supp. Fig. 4A). A cursory examination shows that

the fluctuations vary notably with time: earlier time points show smaller fluctuations than

later ones. We thus grouped the fluctuations by time points. Within each time point,

fluctuations are homogeneous, except for an obvious upward bias corresponding to the data

points representing chromosome I (Supp. Fig. 4B). We observed a similar bias in all 8 time

points and thus excluded the data from the set of residuals used to estimate the distribution

of fluctuations. (However, we did not exclude chromosome I from our model fits.)

Excluding the differences from chromosome I, we compiled histograms for the 8 time

points (Supp. Fig. 4C). These histograms estimate probability distribution functions for the

differences between two noisy measurements. For curve fitting, we need to estimate the

distribution of a single noisy measurement. Elementary properties of the variance imply

that, for two independent random variables X and Y , Var[X − Y ] = Var[X] + Var[Y ]. For

two independently and identically distributed random variables, the standard deviations of

the differences are then
√

2 times larger than the standard deviation for single-measurement

noise. Correcting for this factor, we found the following standard deviations: σ10 = 1.16,

σ15 = 1.43, σ20 = 1.96, σ25 = 2.46, σ30 = 2.96, σ35 = 3.37, σ40 = 3.05, and σ45 = 3.00 (The
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caption to Supp. Fig. 4C gives the uncorrected values.)

To examine the fluctuation distributions further, we rescaled the fluctuations for each data

point by dividing by the standard deviation for that time point. After rescaling, all eight

histograms collapse to a single distribution (Supp. Fig. 4D). This confirms that the noise

fluctuations depend only on a reduced variable (fi − di)/σi, as assumed when writing down

Eq. 1. Unfortunately, two problems need to be addressed in order to perform a rigorous

fit. First, the distributions are not Gaussian distributed (Supp. Fig. 4C). In particular,

the positive-valued tails are approximately exponential, implying that large fluctuations

are much more likely than a noise model (likelihood function) based on Gaussian statistics

would suggest. Second, the distribution is clearly skewed (asymmetric about 0). This means

that the noises of the two experiments are not identically distributed and that the σ values

obtained from the
√

2 scaling might not approximate the deviation of the single-measurement

noise well. (It is easy to prove that the difference between two independently and identically

distributed random variables must be distributed symmetrically about zero.) Without more

measurements, it is difficult to infer the actual form of the noise distribution. One further

test examines the independence of fluctuations in one data point compared to another.

We checked this by computing the autocorrelation function of the (scaled) residuals. The

autocorrelation curves collapse, and there is only a weak correlation in the first few data

points (Supp. Fig. 4E). Thus, the assumption of independence is reasonably well satisfied.

At this point, we have established that it is reasonable to treat the fluctuations in each

data point separately and that the fluctuations are a function only of the reduced variable

(fi − di)/σi. Although we do not know the exact form of the likelihood function, we can

examine how sensitive our model fits are to its precise form. Thus, we compared least-squares

fits (assumes Gaussian likelihood function) and robust fits (assumes exponential deviations

and uses a χ2 =
∑Nd

i=1 |fi − di|/σi). The comparison used the data from chromosome XI,

and some of the results are shown in Supp. Fig. 5. In general, we found little to distinguish

between the results of the two fits. The main difference is that there are systematic shifts

between corresponding parameters. The robust fit shifts the global v by ≈ −0.2 kb/min,

origin positions by ≈ ±1 kb, t1/2 by ≈ −3 min, tw by ≈ −2 min, and n by ≈ −1. We

speculate that using the actual noise distribution to fit would give parameters whose values

are inbetween those obtained from a least-squares fit and those obtained from a robust fit.

Since least-squares and robust fits give similar parameter values, we decided to adopt
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the more standard least-squares χ2 statistic, noting however that any P values will be

severely underestimated, as they fail to account for the exponential tail of the distribution.

For a similar reason, the statistical errors for the parameters estimated by the fit will be

underestimated. We listed them nonetheless, as their relative values attest to the relative

certainty in the associated fit parameters of the same type.

In reporting our fits, we follow common practice and record, instead of χ2, the “reduced

chi square” χ2
ν ≡ χ2/ν, where ν is the number of degrees of freedom, ν = Nd −Np, with Nd

the number of data points and Np the number of free parameters in the fit. For ν � 1, always

true in our analysis, the χ2
ν statistic is expected to be distributed as N (1,

√
2/ν). However,

we recall that the exponential tail of the noise fluctuations will increase the expected standard

deviation of the χ2
ν statistic significantly.

Before proceeding to whole-genome fits, we first made a detailed comparison of the VVSM,

SM, and MIM models on chromosome XI, which has Nd = 2678 and Np = 99, 76, and 54

for the VVSM, SM, and MIM, respectively. The χ2
ν values for the three models are 2.29,

2.48, and 2.76. These values exceed the expected χ2
ν value of 1 by 42, 53, and 63 standard

deviations. Given the uncertainty in the distribution of χ2
ν , we did not reject the fits but

attempted a more qualitative description of the fit quality (Supp. Fig. 6). The fit residuals

and their distributions are all quite similar (Supp. Fig. 6A and B). The autocorrelation

function is only slightly larger than that for the noise estimate (Supp. Fig. 6C), suggesting

that the fits do capture most of the details of the data. The similarity of results for the

three models justifies favoring the model with fewest parameters (MIM model). Repeating

the comparison for whole-genome fits, we found χ2
ν for the SM and MIM genome-wide fits:

4.91 and 5.83 (ν = 48129 and 48481).

C. Comparison between models with variable and constant fork velocity

The formalism introduced in the Methods can be extended to incorporate a space-time-

dependent fork velocity v(x, t). We generated a spatially varying v(x) as follows: The

summand in Eq. 7 in the main text is only non-zero when ∆xp contains an origin at xi,

implying that the sum is really over p = i. By replacing the global v by a local vi, we

associated a different fork velocity with each origin. In this way, we obtained spatially

varying fork velocities. Generalizing further, with a variable fork velocity v(t), the edges of
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the triangle in Fig. 7 would be curved. The goal is then to find the time along the curved

edge by solving ∫ t

te

v(t)dt = |x− xp| (2)

for te. Here, te is a function of t, |x−xp| and the parameters that form v(t). This generalizes

the constant-velocity case, where te = t− |x− xp|/v. Replacing the argument t− |x− xp|/v

used previously with te(t, |x− xp|, vi,···) [with vi,··· representing the parameters that describe

v(t)], one obtains a formalism that allows for a time-dependent fork velocity. In the fits, we

kept the velocity constant in time. This is consistent with independent evidence that the

velocity is constant throughout S phase (Rivin & Fangman, 1980).

We used this “variable-velocity-sigmoid model” (VVSM), the SM, and the MIM to fit

chromosome XI (Supp. Figs. 7). Each of the three models captures most of the variations in

the data, explaining 98.87% (VVSM), 98.77% (SM), and 98.62% (MIM) of the variance of

the raw data. Below, we also showed that the distribution of the residuals of the three fits

are very similar (Supp. Fig. 6B), indicating that the goodness of the three fits are similar.

Thus, we conclude that constant-velocity models describe the replication kinetics as well as

variable-velocity models.

D. Mean-field analysis of origin efficiency

The relationship between efficiency and potential efficiency shown in Fig. 4 can be mostly

explained by a mean-field analysis. The idea is that all the neighboring origins of an origin

are replaced by an “average neighbor” whose firing-time distribution is the average of all the

distributions. We averaged over all 342 firing-time distributions in the SM to produce the

genome-wide-averaged φavg(t). We then computed the average nearest-neighbor distance (≈

28 kb) to locate the average neighbor. Next, we approximated tw as a function of t1/2 by

fitting a power-law through Fig. 3D. The analytic relationship between tw and t1/2 implies

that the potential efficiency is also a smooth function of t1/2. Finally, the efficiency was

then calculated by placing the average neighbor at the average nearest-neighbor distance

beside origins. Going through all the t1/2 values extracted, we generated the curve shown in

Fig. 4C. This analysis suggests that the geometric effect we see on observed origin efficiency

is not specific to the particular arrangement of origins in budding yeast; however, such an

effect would be generally expected for a genome with this density of origins.
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E. Effects of asynchrony in cell population

It is apparent that asynchrony widens firing-time distributions. Consider a scenario where

the timing of every origin is deterministic. Since cells in an asynchronous culture enter S

phase at different times, the initiation times would appear to be stochastic. To assess the

effect of asynchrony on the parameters we extracted, we extended our formalism to include

asynchrony.

For the modeling, we first distinguish between “starting-time asynchrony” and “progres-

sive asynchrony.” For the microarray experiment analyzed, the cell culture was synchronized

in two steps (first by alpha-factor incubation then with cdc7-1 block) before samples were

taken for hybridization. We define starting-time asynchrony as the asynchrony of release

from the last synchronization procedure. In other words, this is the asynchrony inherent

to the synchronization methods used. Now, consider a scenario where the synchronization

procedures produce a perfectly synchronized cell culture. If the replication program is not

strictly deterministic, the DNA content for each cell would evolve differently as S phase pro-

ceeds. This “progressive asynchrony” is inherent to the stochastic replication program. The

probabilistic model presented in the Methods captures precisely the effects of progressive

asynchrony on microarray replication fraction profile. Since the data analyzed contains both

types of asynchrony, we extend the formalism to include starting-time asynchrony.

We model the starting-time asynchrony of a cell population by a starting-time distribution

ψa(t), defined as the number density of the cell population that is t minutes into S phase.

Cells associated with negative t enter S phase t minutes after the start of S phase. If the

probed cell culture has a starting-time distribution ψa(t), the measured replication fraction

profile (containing both types of asynchrony) is expressed as the convolution

fa(x, t) =

∫ ∞

−∞
f(x, t′)ψa(t− t′)dt′, (3)

with f(x, t) being the replication fraction profile for a cell culture having no starting-time

asynchrony [ψa(t) = δ(t)].

We simulated the replication fraction profiles that contain both types of asynchrony

using a slightly modified version of our previously developed method (Jun et al., 2005). The

theoretical prediction matches the simulation data well (Supp. Fig. 8A). The most apparent

effects of the starting-time asynchrony are the “squeezing” of the peaks in the replication-

fraction axis and the “stretching” of the peaks in the position axis. The former mainly
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translates into a wider firing-time distribution, whereas the latter translates into a faster

fork progression rate.

To apply Eq. 3 to our analysis, we need an estimate of the starting-time distribution.

To our knowledge, although there are works that estimate the starting-time distribution

resulting from alpha-factor synchronization (Niemistö et al, 2007; Orlando et al, 2007), there

are none related to the cdc7-1 block. Since the cdc7-1 block is the final synchronization

step taken and since it blocks cells at the G1/S boundary, it is important to use an estimate

of ψa(t) that includes the effects of cdc7-1. To do this, we compared the flow-cytometric

determination of DNA content between the 0-min and 20-min time points (Avino et al.

2007; Fig. 1A).

We measured the width by measuring the spread of DNA content at half the peak height.

The width at 0-min is a reference width corresponding to perfect synchrony, as all the cells

have 1C amount of DNA. The width at 20-min includes both types of asynchrony and can be

used to generate an upper bound of the starting-time asynchrony. A simple image analysis

shows that the full width of the 20-min peak is 5 pixels larger than that of the 0-min peak.

DNA content increases from 1C to 2C over 75 pixels. Using a crude estimate that DNA

content linearly increases with progression of S phase, we converted 5 pixels to 4 minutes

(via 60 min/75 pixel). Since the flow-cytometric peaks are Gaussian-like, we set ψa(t) to

a normal distribution with mean zero and standard deviation 2 min, denoted by N (0, 2).

The estimated asynchrony implies that 95% of the cells would have entered S phase within

8 min of the start of S phase.

We refit the SM to the chromosome-XI part of the data with Eq. 3 (instead of Eq. 7 in

main text) and the estimated asynchrony. We found that the local parameters extracted

with asynchrony are not significantly different from those extracted without (Supp. Fig. 8B

and C). The estimated starting-time asynchrony shifts t1/2 by ≈ -0.5 min, tw by ≈ -1 min,

and v by ≈ -0.3 kb/min. These shifts do not change the relationship between t1/2 and tw, and

the results presented in the main text remain valid. We note that using a linear relationship

between DNA content and time underestimates the asynchrony; however, refitting using

N (0, 4) also gives shifts that are unimportant.
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F. Fits to raw and smoothed data

It is common practice to analyze a smoothed version of microarray data so that peaks can

be more easily identified. It is thus tempting to use smoothed data for curve fitting, as well.

However, there are reasons to prefer fits to the raw, unsmoothed data. First, as a matter of

principle, smoothing can only reduce the information available in a dataset and can never

add to it. Second, the smoothing procedure correlates the statistical fluctuations among

nearby data points, requiring a modification of standard least-squares fitting algorithms.

To test whether there are significant differences between the results of fitting to raw and

to smoothed datasets, we repeated the SM fit of Chromosome XI using the smoothed data of

McCune et al 2008. The residuals (Supp. Fig. 9A) and their autocorrelation function (Supp.

Fig. 9B) show a correlation among neighboring points that results from the smoothing

operation. The χ2 statistic of standard least-squares routines then needs to be modified

to explicitly account for the correlations (Sivia & Skilling, 2006), and using the standard

statistic (Eq. 1) can bias the resulting parameter values. With this particular dataset, we

found little practical difference between fitting to the raw data and fitting to the smoothed

data using the standard χ2 statistic. Both fits produced parameter values that mostly

agreed to within 10%; only a few parameters, corresponding to less-apparent peaks in the

microarray data, do not match well (Supp. Fig. 9C). Thus, it is unlikely that any substantive

conclusions reached about this particular dataset would have been affected had we fit to the

smoothed data, using the standard χ2 statistic; however, since it is just as easy to fit raw data

as it is to fit smoothed data, we recommend doing the former and encourage experimental

groups to publish and make available the raw datasets.
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Supplementary Table Legends

SUPP. TAB. I. Origin properties extracted from the genome-wide SM. For the column titles,

we used the following abbreviation: “chr” for chromosome, “ori pos” for origin position,

“err” for error, “pot eff” for potential efficiency, and “obs eff” for observed efficiency. Under

the “Alvino,” “OriDB,” and “MIM” columns, 1 denotes that the origin is also identified in

Alvino et al 2007, Nieduszynski et al 2007, and in the MIM, respectively, while 0 denotes

not identified.

SUPP. TAB. II. Origin properties extracted from the genome-wide MIM. Same convention

as Supp. Tab. I.

SUPP. TAB. III. Genome-wide parameters extracted from the SM and MIM fits. For the

MIM, t∗1/2 and r∗ are used to construct the global φo(t) = t/[t+ (t∗1/2)
r∗ ] (see Methods). The

quantity t∗1/2 plays a role that is analogous to the quantity t1/2 for the SM model.
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SUPP. FIG. 1: Genome-wide SM and MIM fits, separately shown for each chromosome. Roman

numeral corresponds to chromosome number. The x-axis denotes the position along the chromo-

some. Markers are data; solid lines are fits from SM; dotted lines are fits from MIM. Upper row of

solid triangles at the bottom denote origin positions identified in Alvino et al 2007. In the middle

row, open circles correspond to estimated origin positions from the SM, while crosses correspond

to those from the MIM. The lower row of triangles correspond to origins in the OriDB database

(Nieduszynski et al, 2007). The eight curves from bottom to top correspond to the replication

fraction f(x) at 10, 15, 20, 25, 30, 35, 40, and 45 min after release from the cdc7-1 block.
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SUPP. FIG. 2: Replication fraction of ARS501. ARS501 is located on chromosome V at ≈ 549

kb. Circles are data from a slot-blot experiment (Ferguson et al, 1991); squares are data from the

newer microarray experiment (McCune et al, 2008). Lines are fits to the data using a sigmoid (Hill

equation). Values for trep and twidth are extracted for comparison. For the slot-blot, trep = 33 min

and twidth = 11 min. For the microarray, trep = 33 min and twidth = 26 min.
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SUPP. FIG. 3: ChIP-chip signal vs parameter n. The y-axis is the ChIP-chip signal for MCM2

occupancy (Xu et al, 2006); the x-axis is the extracted parameter n from the MIM. Origins with

larger n values are more efficient in the mode. The correlation coefficient between the two quantities

is 0.003 which is less than the critical value indicating a correlation (rc = 0.121, two-sided test,

264 degrees of freedom, signficance level = 0.05).

19



-20

0

20

R
ep

. f
ra

c.
 d

iff
er

en
ce

50000400003000020000100000

Data point

10 15 20 25 30 35 40 45

20

0

-20

R
ep

. f
ra

c.
 d

iff
er

en
ce

2000150010005000

Data point

time point = 40 min

0.4

0.3

0.2

0.1

0.0

D
is

tr
ib

ut
io

n

10 15 20 25

30 35 40

200-20

Difference

45

0.001

0.01

0.1

1

D
is

tr
ib

ut
io

n

20100-10

Normalized difference (σ)

 10  15
 20  25
 30  35
 40  45
 Gaussian fit

1.0

0.5

0.0

A
ut

oc
or

re
la

tio
n

20151050

Data point

 10  15
 20  25
 30  35
 40  45

A

B

C

D E

SUPP. FIG. 4:

20



SUPP. FIG. 4: A. Difference between two equivalent experiments from McCune et al

2008. The differences between the replication fraction of two nominally equivalent exper-

iment are shown serially in time. The fluctuation of the differences varies across different

time points. B. Differences for the first 2000 data points time point 40 are shown. The up-

ward bias in the shaded region corresponds to chromosome I. All time points have this bias.

C. Histograms of the differences for different time points. In making the the histograms

(bin width = 0.5), we excluded the first 200 data points of each time point because of the

apparent upward bias. These data points correspond almost exactly to chromosome I. The

standard deviation of the differences (in sequence of increasing time points) are 1.64, 2.03,

2.77, 3.48, 4.18. 4.76. 4.31, and 4.25. The σt values used in the fits equal these standard

deviations divided by
√

2. D. The histograms (bin width = 0.2) in C collapse onto the

same distribution after scaling the differences for each time point with its corresponding

σt. Small deviations are Gaussian like, while large positive deviations are exponential. E.

Autocorrelation of the differences. The autocorrelation shown excludes the first 200 data

points, as well.
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SUPP. FIG. 5: Comparison between least-squares and robust fit parameters for chromosome XI.

The x-axis corresponds to the least-squares fit, the y-axis to the robust. Dotted line shows y = x.

The least-squares t1/2 (tw) values are on average 3.24 (0.73) min larger than the robust t1/2 (tw)

values.
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SUPP. FIG. 6: A. Residuals of the model fits to chromosome XI. Markers correspond to the

residuals of the three different model fits, VVSM, SM, and MIM, discussed in the text. The

residuals are plotted serially in time points. B. Histogram of the residuals with bin width = 0.5.

The standard deviations of the VVSM, SM, and MIM residuals are 3.21, 3.42, and 3.52, respectively

c. Autocorrelation of the residuals of the VVSM, SM, and MIM fits.
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SUPP. FIG. 7: A. Fits to chromosome XI. Markers are data; solid lines are fits from VVSM; dotted

lines are fits from SM; and dashed lines are fits from MIM. The eight curves from bottom to top

correspond to the replication fraction f(x) at 10, 15, 20, 25, 30, 35, 40 and 45 min after release

from the restriction temperature of cdc7-1. The dataset covers the genome at ≈ 2-kb resolution.
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SUPP. FIG. 8: A. Simulation and theoretical replication fraction profile with three different

starting-time distributions. The notation N(µ,σ) denotes a normal distribution with mean µ

and standard deviation σ. The three curves are generated using the same set of SM parame-

ters (xi, t1/2, tw and v) and correspond to the same time point. The only difference among them

is the starting-time distribution. The theoretical calculation (solid cruves) matches the simula-

tions (dashed curves) well. Horizontal dashed lines are the replication fraction 0-lines for the three

cases. B. Comparison of t1/2 fit parameters. The x-axis corresponds to the SM parameters ex-

tracted without consideration of asynchrony; the y-axis corresponds to the case with consideration

of asynchrony. Dashed line shows y = x. C. Comparison of tw fit parameters. The x-axis, y-axis,

and dotted lines are as described in B.
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SUPP. FIG. 9: A. Residuals of SM fit to the smoothed data of chromosome XI. the first 500 of

the 5136 data points of residuals are shown for clarity. The number of data points here is larger

than that of the raw data (2678) because the smoothed data was also interpolated (McCune et

al, 2008; Raghuraman et al, 2001). B. Autocorrelation of residuals, showing the correlation in

noise produced by the smoothing algorithm. C. Comparison of t1/2 fit parameters. The x-axis

corresponds to the raw data, the y-axis to the smoothed data. Dotted line shows y = x.
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