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Abstract

Researchers have debated whether instructional-based teach-
ing or exploration-based active learning is better for decades
with unsatisfying results. A main obstacle is the difficulty in
precisely controlling and characterizing the pedagogical meth-
ods used and the learning conditions in empirical studies. To
address this, we leveraged existing computational models of
teaching and active learning to formalize the methods and the
learning process. We compared the two pedagogical methods
in a concept-learning framework and investigated their effec-
tiveness under various scenarios. Our results show that when
the learner and teacher are conceptually aligned, teaching is
at least as effective as, and often much more effective than ac-
tive learning, but when the alignment is broken, active learning
can yield moderate improvement over teaching. We conclude
by discussing our results’ implications for the debate and the
prospects of bringing computational models to bear on com-
plex real-world problems that are resistant to simple experi-
mental investigation.
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For centuries, the predominant pedagogical method has
been instructional-based teaching such as lecturing. Over the
past several decades, constructivism has received increased
attention, and educational practitioners have been incorporat-
ing constructivist pedagogical methods that emphasize active
learning, exploration, and discovery by the learners them-
selves (Bruner, 1961; Vygotsky, 1978). These methods are
typically described as being opposite: the instruction-based
method is teacher-centred and passive, while the exploration-
based method is learner-centred and active.

Researchers have taken up the debate between instruction-
based teaching and active learning, with unsatisfying results.
Early cognitive science extolled the virtues of active learning
(Bruner, 1961). However, more recently researchers have al-
ternately found evidence for both teaching (Mayer, 2004) and
active learning (Sweller, 1988; Gureckis & Markant, 2012).
Researchers have also found instances of equivalence (Klahr
& Nigam, 2004) and nuanced interplay between teaching
and active learning when in sequence (Bonawitz et al., 2011;
DeCaro & Rittle-Johnson, 2012). This has led researchers
to propose new constructs, such as Guided Play (Weisberg,
Hirsh-Pasek, & Golinkoff, 2013), which have moved forward
the debate. However, when and why teaching or active learn-
ing may yield better outcomes remain largely unresolved.

One of the greatest barriers to resolving this debate is
the difficulty in fully characterizing the pedagogical meth-
ods used and precisely controlling the conditions under which
they are used (Prince, 2004). We argue that by abstracting
away from the particulars of specific learning material (e.g.,
biology or mathematics) and idealizing the learning process
(to be rational and normative), we may use computational

models to formalize the methods and conditions and thus
clarify when and why teaching may outperform active learn-
ing, and vice versa. Computational models of both teaching
and active learning exist in the cognitive science and machine
learning literature (e.g., Shafto & Goodman, 2008; MacKay,
1992). These models have been shown to describe human be-
havior well in a variety of simple learning settings and higher-
level perceptions (Shafto, Goodman, & Griffiths, 2014; Cas-
tro et al., 2009; Gureckis & Markant, 2009; Yang, Lengyel,
& Wolpert, 2016). However, the two types of models have
never been compared in the same framework.

We provide the first computational comparison between
teaching and active learning. Following previous computa-
tional work, we use a concept learning task to assess the ef-
fectiveness of the two pedagogical methods. To approximate
some of the complexity of real-world learning problems, we
design the concept space to be hierarchical and introduce par-
tial ambiguity between concepts by introducing overlap be-
tween the concepts. As an illustration, the categories “bird”
and “sea animals” are partially ambiguous due to the exis-
tence of examples that are in both categories. Such ambiguity
makes certain examples uninformative for grasping distinc-
tions between the concepts, thus limiting the performance of
active learning. In these cases the guidance of a knowledge-
able and helpful teacher may be of great import, by avoiding
such ambiguous examples. Using varying degrees of ambi-
guity, we will investigate under what scenario is the effec-
tiveness of teaching more pronounced.

Given perfect knowledge and rational inference, we know
that teaching is at least as effective as active learning. This
assumes that the teacher is knowledgeable and helpful and
that the learner and teacher use the same inference scheme.
There is little reason to believe that these assumptions are met
in everyday educational settings (Chi, Siler, & Jeong, 2004).
The effect of an unhelpful teacher is easy to imagine (random
guidance), but the effects of a teacher with imperfect knowl-
edge of a learner or a teacher operating with incorrect beliefs
about the world is less apparent. To investigate this, we in-
troduce a conceptually misaligned teaching model in which
we vary the types and degrees of misalignment between the
teacher’s and learner’s concept spaces. Using this, we explore
scenarios under which exploration outperforms teaching.

Framework

The most common and simplest concept learning tasks use
concept spaces with a single-layer of Boolean concepts where
the features can be discrete or continuous (e.g., Shafto &
Goodman, 2008; Castro et al., 2009; Gureckis & Markant,



2009). While this is a sensible framework for certain ques-
tions, to accentuate differences between the models and en-
sure that we can model the kinds of challenging concept
learning problems that appear in more realistic scenarios,
we adopt a more complex concept space with two-layered
Boolean concepts, where the features of the higher-level con-
cepts are themselves concepts. In particular, a two-layered
concept space allows us to introduce partial ambiguity be-
tween the concepts that only teaching, but not exploration,
can resolve (explained later in more details with an exam-
ple). Similarly, this allows us more interesting variations in
the ways that teachers may be incorrect about learner’s be-
liefs, or the true state of the world. Below we begin the de-
scription of the framework by describing the concept space
and setting notations before presenting a detailed example,
and the simulations results.

Concept space

A concept space contains two concepts. A concept contains
at least 1 and up to 6 distinct patterns. There are in total
6 types of patterns (Fig. 1 left), and they are all the Boolean
concepts that have 4 features with balanced binary labels, that
is, two features labeled 0 and two features labeled 1. Figure 1
provides two example concept spaces. Formally, we denote
the concept space by H, the concepts by h = {hy,h,}, the j"
pattern in a concept by f;, the features by x, and the feature’s
binary label by y = {0, 1}.

The prior probability on the concept space is hierarchi-
cally uniform. This means that P(h;) = P(hy) = % and that
P(fjlhe) = NL,( for all j, where Ny is the number of patterns in
hy. We say that the concepts are ambiguous when two con-
cepts have shared patterns, and the degree of ambiguity, a,
is defined by the number of shared patterns (see Fig. 1 for
example). Recall that ambiguous concepts allow a stronger
distinction to be made between teaching and active learning.

For the discussion of concept misalignment—where the
teacher may be incorrect about the learner’s beliefs or the true
state of the world—we denote the learner’s concept space by
Hj, the teacher’s concept space by Hr, and the true world
space by Hy. We quantify the degree of misalignment, m,
between two concept spaces by the the minimum number of
pattern “moves” within a concept space to make the two con-
cept spaces equivalent. The move operation includes mov-
ing a pattern between two concepts, removing a pattern, or
adding a pattern. Misalignment with Hy is sometimes re-
ferred to as misconception. Later we will investigate how
the effectiveness of teaching degrades when the learner has
misconceptions (Hy = Hr # H;) and when the teacher has
misconceptions (Hy = Hy # Hr).

An example trial

First, a concept in Hy is chosen as the correct answer; then,
a pattern within that concept is chosen as the underlying pat-
tern. On the first trial, a pedagogical method of choice (op-
timal exploration or teaching) computes scores (according to
Eq. 3 or Eq. 6, respectively) for all four potential features.
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Figure 1: The six types of patterns, denoted f, are used to construct
concepts. The positions—top left (TL), top right (TR), bottom left
(BL), and bottom right (BR)—of the small squares with blue outline
represent the four features. The colors—white or black—represents
the binary feature labels which correspond to individual observa-
tions. For Concept space A, the prior for each pattern in Concepts

1 and 2 are P(f|hy) P(h1) = £ x § and P(f|hy) P(hy) = 1 x 1, re-
spectively. The degree of ambiguity, a, is 2 because f3 and f5 in
hy are also in hy. For Concept space B, P(f|h1)P(h1) = % X %
P(flhy)P(hp) = 1% %, and a = 1. The degree of misalignment be-
tween Concept spaces A and B is 2: one has to make two “moves”
in Concept space A (delete the last pattern in Concept 2 and move

the second pattern from Concept 2 to Concept 1) in order to make it
equivalent to Concept space B.

The learner queries the world the feature with the highest
score, and the world labels the query according to the prede-
termined underlying pattern. With this observation, the cho-
sen pedagogical method computes the scores for the remain-
ing three features. Then, the learner queries; the world labels;
and the process repeats until every feature is queried. Before
the first query and after each query, the learner’s posterior be-
lief (via Eq. 2) about the correct concept is recorded.

We now give a concrete example that compares optimal ex-
ploration with optimal teaching. We first name the features as
Top Left (TL), Top Right (TR), Bottom Left (BL), and Bot-
tom Right (BR; see Fig. 1 caption). Figure 2A shows the
concept space under consideration, the target concept, and
the target underlying pattern. In this case, the teacher’s con-
cept space, the learner’s concept space, and the world are all
aligned (Hw = Hr = Hp). Figure 2B shows the scores that
exploration and teaching assign to each query. The reasoning
behind the scoring is based on predicted outcomes. For ex-
ample, if TL is queried and labeled black, then one can rule
out all patterns in s, and be certain that 4 is the answer. This
is good. But if TR is queried and labeled black, one can only
rule out f> in i1 and f] in Ay, leaving the two concepts equally
likely, which is not good. Following this reasoning, the active
learner or teacher considers all the possible outcomes (if TL
is white...; if TB is black...; if TB is white...; and so on) and
chooses the one that best resolves the answer. In this case,
before observing anything, both optimal exploration and op-
timal teaching scores TL or BR the highest. In this trial the
learner chooses TL and observes white.

Given this data, D = {x; = TL,y; = 1}, the learner rules
out f1 and f> in hy; thus, at this point, the learner believes
that P(hi|D) = § and that P(h;|D) = 3. Optimal explo-
ration chooses a query that reduces the expected uncertainty
about arriving at an answer. Intuitively, uncertainty is high-
est when % and hy are equally likely and lowest when one
is definitely correct. Following the above reasoning, an ac-
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Figure 2: An example trial. A. The concept space under consideration. The predetermined underlying pattern is f3 in hy (red box), which
happen to be equivalent to f3 in /;. B. Query scorings for optimal exploration according to Eq. 3 (left) and for optimal teaching according
to Egs. 6 (right). The ”x” indicates that an observation has been made on that feature, so that feature is excluded from the set of potential
queries. The chosen query in each step is highlighted yellow and outlined with a thick border. C-D. Performances of optimal exploration and
teaching following the observation sequences given in B. Blue squares indicate that the feature value has not yet been observed.

tive learner computes the expected uncertainty in each pre-
dicted case. After summing over all the expected uncertainty
weighted by the chance those case would occur, the optimal
explorer can then assign a score to each query to indicate how
much certainty was gained (or uncertainty is reduced). Here,
the sum shows that BR leads to the highest information gain,
mainly because it helps reach certainty with a 50% chance.

Optimal teaching chooses a query to maximize the
learner’s inference for a desired concept. As such, the query
depends on the answers that the teacher has in mind. The rea-
soning behind optimal teaching is again based on predicted
cases and goes as follows: If the real answer is A, BR will
be white, and TR and BL will be black. Hence, when BR is
revealed, the learner will infer that both concepts are equally
likely, and when TR or BL is revealed, the learner will con-
sider /1 to be more likely. Thus, to help the learner infer the
hypothetical answer of &, the teacher will guide the learner
to query BR, even though it is, in some sense, ambiguous.
Following the same kind of reasoning, the teacher concludes
that, for 4y, TR or BL is the better choice. Now, because
the learner knows that the teacher is helpful, the learner can
actually infer the answer with certainty just by the teacher’s
guidance because the guidance is answer-dependent.

This line of reasoning shows that optimal teaching can
be better than optimal exploration for two reasons. First,
the teacher helps reduce irrelevant search by tailoring guid-
ance based on the answer. This is consistent with theories
that support instructional-based teaching (Kirschner, Sweller,
& Clark, 2006). Second, because the guidance depends on
teacher’s knowledge of the answer, the learner can leverage
pedagogical reasoning—the fact that the teacher is knowl-
edgeable and helpful—to make stronger inferences.

Figure 2C-D show the performance with optimal explo-
ration and teaching, respectively. The performance is defined
as the learner’s posterior belief about the target concept af-
ter observing some data (Equation 2 is used for exploration,
and Eq. 4 is used for teaching). The performance with opti-
mal exploration eventually reaches chance level because the

underlying pattern, f3 in A3, is ambiguous in this case. The
performance with teaching reaches 1 even for the ambiguous
pattern because in optimal teaching the learner can use ped-
agogical reasoning to break this ambiguity. This type of per-
formance difference via pedagogical reasoning is not possible
with single-layered concept space.

Inference

The learner’s inference follows Bayes’ rule. Given some data
D = {x;,y;}Y,, the learner’s joint posterior is

PO f1D) = G = (D11 P )
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In our framework, labelling is deterministic, so the likelihood
P(yilx;, fj) is either O or 1. The normalizing constant, Z, can
be computed exactly by enumeration in our simple setting.

The joint posterior of Eq. 1 can be used to obtain the con-
cept posterior,

P(h|D) =} P(h.f;|D), 2
J

by marginalizing out f. It can also be used to obtain the pat-
tern posterior, P(f|D) = Y P(h, f| D), by marginalizing out
h. This is used for computing the predictive distribution.

Optimal exploration

We model optimal exploration following a Bayesian active
learning model that chooses query x to myopically maximize
the expected information gain (MacKay, 1992). The proba-
bility of choosing an x is

P(x\D) = Jim — [(HAD]~HIAD x)]) )| O

Ol—o0

o
Here, Z=Y . {(H[hﬂ)] —H[h\@,x’,y}}P(y‘x,’@)} is the nor-
malizer to produce a probability distribution over x, and



H[a|-] = =Y, P(h|-)log P(h|-) is the Shannon entropy. Be-
cause HJ[A|-] is a measure of the uncertainty of the posterior,
the difference in entropy before and after receiving a new ob-
servation pair {x,y} in Eq. 3 quantifies the expected reduction
in h uncertainty, which is information gain. The expectation
operator, (- - ) Plyl, D) indicates that the learner does not know
exactly whether the label for x* will be O or 1 but maintains a
predictive distribution. The predictive distribution is given by
P(ylx, D) = ¥; P(ylx, ;) P(fj|D). The limit o — oo assigns
probability uniformly over the x’s that produce the highest ar-
gument value. It returns the set of values that have the highest
probability when there is more than one; it is equivalent to
argmax when there is a single highest argument value.

Optimal teaching
We define optimal teaching to satisfy three assumptions
(Shafto & Goodman, 2008; Shafto et al., 2014). First, the
teacher knows the correct answer. Second, Hy = Hr = Hj,
and the teacher and learner use exactly the same inference
scheme. Third, the teacher and the learner are cooperative.
From the learner’s perspective, this means that the learner rea-
sons about how the teacher, knowing the answer, chooses the
most helpful guidance. From the teacher’s perspective, this
means that the teacher provides guidance while being aware
of the learner’s inference.

We begin the formulation with the learner’s inference.
Given the guidance, x, from the teacher and the correspond-
ing new observation, y, the learner’s inference follows

PL(h,f|x,y,Q)): P(y|xvf)PT(x|h7Q))PL(fvh'Q)) )
Yk POlx, £;) Pr(x|he, D) Pr(fj hi| D)
“
Note that the teacher’s guidance carries information about the
answer via the likelihood, Pr(x|h, D). The cooperative infer-
ence mentioned above can be modeled by combining Eq. 4
with

P(h|x, D) = % <ZPL(hafj|x’yv -{‘D)> %)
Y Pr(ylx,h,D)
o
PT(x\h, @) — lim [PL(h‘x7 Q))P(x)]

e Yo [PL(h|x', D) P(x')]*
where Pr(y|x,h,D) = ¥; P(y|x, ;) PL(fj,h|D), Z is a nor-
malizer, and P(x) is a uniform distribution over x. This
system of equations (4-6) is first iterated until convergence,
then an x is sampled from Eq. 6 conditioned on the teacher’s
knowledge of the true concept. A sensible initial condition is
a uniform Pr(x|h, D) in Eq. 4. Compared to Eq. 3, the extra i
in the expectation operator, (- ) Pu(ylx,h,m)» Shows that teacher
and learner reasons about one £ at a time. The subscript L
in P.(-) emphasizes that the concept-pattern joint prior and
posterior are based on the learner’s reasoning; the subscript T
in Pr(x|h, D) emphasizes that the x is based on the teacher’s
reasoning; and the unsubscripted P(y|x, f) indicates that the
label likelihood is provided by the true world. !

(6)

I'The formulation here appears different from (Shafto et al.,

Conceptually misaligned teaching

Optimal teaching is always at least as good as optimal explo-
ration because the teacher’s guidance offers extra informa-
tion about the correct answer. But what happens when the
assumptions of optimal teaching are violated? We consider
two types of violation that breaks the second assumption of
the learner and teacher sharing the same inference by intro-
ducing misconception in the learner (type 1: Hy = Hy # Hp)
and misconception in the teacher (type 2: Hy = Hy # Hr).
Note that the first and third assumptions of optimal teaching
are still kept. The first assumption poses that regardless of
whether the teacher has misconception, the teacher knows the
correct concept label. The third assumptions poses that the
teacher and learner still reason cooperatively. This leads us to
introduce conceptually misaligned teaching, where the two
agents, the learner and teacher, reason about each other while
wrongly assuming the other agent’s concept space. Computa-
tionally, the teacher provides x by going through Eqgs. 4-6 with
Hr, thinking that the learner also operates with Hy. Having
received x, the learner also goes through Egs. 4-6, while as-
suming that the teacher also has H; in mind. The first type
of violation (misconception in learner) is a common issue in
education (Chi et al., 2004), and the second type (miscon-
ception in teacher but not in learner) is a natural counterpart
simulation to do.

Simulations: systematic comparison

In the Framework section, we gave a detailed example of how
exploration compares to teaching given a particular underly-
ing pattern and concept space. In this section, we compare the
performance of the two pedagogical methods in a systematic
manner over different classes of concept spaces. This will
lead us to address more broadly the condition under which
teaching is better than active learning and vice versa. To this
end, we consider three scenarios.

For all three scenarios, a concept space with degree of am-
biguity, a, contains 6 4 a patterns. All 6 patterns in Fig. 1
are used at least once, but no pattern is used more than twice.
Figure 1 shows two example concept spaces that satisfy the
above criteria. The first scenario assumes that Hy = H;, = Hr
and entertains concept spaces of varying degree of ambiguity
from a = 0 to 5. For a given a, the simulation includes all
combinations of assignments of 6 + a patterns to two con-
cepts, with isomorphic concept spaces counted only once.
The second scenario assumes Hy = Hyp # H; and a fixed
a = 1. We consider all pairings of Hr and Hy, witha =1 up
to concept-space pair isomorphism, and label each pair with
their degree of misalignment, m, which can vary from O to 6.
The third scenario assumes Hy = Hy, # Hy and a = 1. The

2014) because the setup is different in two ways. First, the query
and the label are kept distinct to match the setup of exploration. This
gives rise the two likelihoods in Eq. 4, one for y and one for x. It also
gives rise to the expectation in Eq. 5 with respective to the predictive
distribution over y. Second, in this setup, the teacher knows the con-
cept from which the pattern is drawn from but not the pattern itself;
thus, there is the marginalization over patterns in Eq. 5.
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Figure 3: A. Double-performance plot for the trial in Fig. 2. B. Double-performance plot averaged over concept spaces with differing degree
of ambiguity. The numbers indicate the a of the curve, ranging from 0O to 5 in increments of 1 from the rightmost curve to the leftmost
curve. C. Double-performance plot for a learner with differing degree of misconception, m, as described in the Concept Space section under
Framework. The numbers indicate the m of the curves. All concept spaces have a = 1, so the curve with m = 0 matches the curve witha = 1
in A. D. Double-performance plot for a teacher with differing degree of misconception. The numbers again indicate m and increases from the

top to bottom in order of the curves’ end points.

pairing and labeling are done as in the second scenario.

To visualize the relative performances of exploration and
teaching, we plot the two pedagogical methods against each
other (Fig. 3A). On this double-performance plot, curves
above the diagonal indicates that teaching is better than opti-
mal exploration, and curves below indicates that teaching is
worse. To reveal higher-order trends, we average single-trial
performances firstly over the patterns in individual concept
space, weighted by the patterns’ prior probabilities, and sec-
ondly over concept spaces that have the same label; that is,
the same a or m, with each concept space contributing equal
weight. Figure 3B, C, and D show the relative performances
under the first, second, and third scenario, respectively.

Figure 3B shows that optimal teaching is better than op-
timal exploration when the concepts are partially ambiguous
but no better or worse when the concept spaces are fully un-
ambiguous. When the concept space is fully ambiguous, per-
formances remain at chance level for both teaching and explo-
ration. The advantage of of teaching in absolute performance,
as judged by the end points on the double-performance plot, is
most pronounced with a 30% improvement over exploration
at a medium degree of ambiguity of a = 3. Overall, teaching
is better than exploration under partial ambiguity because of
the reduction in irrelevant search and pedagogical reasoning
described in the example task.

Figure 3C shows that on average, teaching and exploration
perform similarly when the learner’s concept space is wrong.
On the one hand, this shows that teaching is robust against
learner’s misconceptions (in terms of hurting learning) even
when the misconception is strong; on the other hand, it shows
that the benefits of teaching (in terms of boosting learning)
diminishes in the face of a little misconception. The trial-
by-trial performances reveal extreme cases when teaching is
much worse than exploration (0% vs. > 80%). This happens
when the learner’s concept space looks like Concept space B
in Fig. 1, where h; contains all the patterns and %, contains
only one pattern which is also in /. This suggests that the
learner’s strong prior bias for an ambiguous pattern (f3 from
hy or fi from hy) being associated with a particular hypothesis

(i.e., with hy) can distort the effect of pedagogical reasoning
when there is conceptual misalignment.

Figure 3D shows that teaching with the wrong concept
space leads to evidently poorer performance (roughly 10-20%
worse) during learning, but only somewhat poorer perfor-
mance (up to about 10% worse) at the end of learning (af-
ter observing all feature values). The exceptions are when
0 < m < 3; then teaching ends up very slightly (< 5%) bet-
ter. Thus, while the advantage of teaching quickly diminishes
with misalignment, the final performance of teaching is rather
robust. Interestingly, the first and third scenarios combine to
show that exploration before teaching is better than the other
way around, as the advantage of teaching comes in after the
first observation (Fig. 3C), but its disadvantage due to poten-
tial misalignment comes in at the first query (Fig. 3E). This
is consistent with previous findings on the interplay between
exploration and teaching in learning mathematical concepts
(Schwartz & Martin, 2004; DeCaro & Rittle-Johnson, 2012).

In summary, our analysis shows that if one knows little
about the structures of Hy, Hr, and Hy, and their alignments,
teaching is the preferred pedagogical method because it can
potentially be much better and will unlikely be much worse
than exploration. If one knows that there is moderate amount
of misalignment, exploration is the preferred method. If one
knows the detailed structures of Hy, Hr, and Hy, the align-
ments among them, and a particular target concept, detailed
analysis should be done to choose the better method.

Lastly, it is worth considering our results in the context of
popular explanations in favor of active learning. These rea-
sons, including attentional control, enhanced memory, stress
relief, and etc. (Springer, Stanne, & Donovan, 1999; Prince,
2004; Markant, Ruggeri, Gureckis, & Xu, 2016), all suggest
that a learner who explores actively maintains an H; more
consistent with Hy than a leaner who receives passive teach-
ing guidance. A model that includes pedagogical-method-
dependent effect on the concept space is an important direc-
tion for future work.



Discussion

Researchers have debated whether teaching or active learn-
ing is better for decades without reaching a consensus. A
main barrier is the difficulty in precisely controlling the peda-
gogical method and learning conditions for meaningful com-
parison of results that support generalization. We argue that
by formalizing the learning conditions and the pedagogical
methods, we may clarify when and why which pedagogical
method is more effective. We adopt existing models for opti-
mal exploration and optimal teaching and introduce a model
for conceptually misaligned teaching. Our computational
analysis showed that optimal teaching is much better than ex-
ploration when the concepts in play are partially ambiguous,
but this effect diminishes very quickly with conceptual mis-
alignment between the learner and teacher.

We expect this trend in our results to generalize to larger
concept spaces with richer structures. Optimal teaching
should be increasingly more effective than optimal explo-
ration because a larger space allows for greater reduction in
irrelevant search and a richer structure allows for finer ped-
agogical reasoning. However, when there is conceptual mis-
alignment, we expect this advantage of teaching to diminish
quickly because the ways of misinterpreting guidance and ob-
servation also increases with the complexity of the concept
space. The exact scaling between the rate of diminishing ben-
efit and the size and complexity of concept space and is an
interesting question for future work.

We have focused on the pedagogical method that best leads
the learner to a specific concept. This approach is common
to concept learning experiments. However, in many real-
world scenarios, we may also be interested in generalization:
what does performance on one task predict about future per-
formance on related tasks. To capture this, we would need
to consider concept spaces with much richer structure that
would support incremental building of compositional con-
cepts and/or transfer learning. Although beyond the scope
of the current research, even defining what such conceptual
structures should look like in order to capture some of the
richness of real-world concept learning problems is another
interesting question for future work.

Debates about the relative efficacy of different pedagogical
methods have plagued the literature. Because of the complex-
ity of concepts and the variability in the application of the
pedagogical methods themselves, empirical tests have been
largely inconclusive. Our approach has been to abstract away
from some of the details and ask the question in an idealized
setting: under what circumstances would we expect teach-
ing or active learning to perform better. Our results yielded
the surprising conclusion that, even when the assumptions of
teaching are not perfectly met, it is quite robust. While there
is more work to be done to capture the richness of psycholog-
ical theories of active learning, our approach provides a way
forward where empirical research has not been as successful
as initially hoped. Considerable work remains, but systematic
computational analysis of theories themselves provides a po-

tentially promising complement to more traditional empirical
methods for uncovering more optimal methods of delivering
educational content.
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