How *Xenopus* embryos Complete DNA replication reliably: Solution to the Random-Completion Problem

Scott Yang, John Bechhoefer

Simon Fraser University, Physics

Outline

- DNA replication in frog embryos
- Our model
- Results

http://embryology.med.unsw.edu.au/OtherEmb/frog1.htm

The Random Completion Problem

- Initiations are stochastic
- Typical replication time \approx 20 min.
- Dead if > 25 min.
- Occurs only 1 in 250 times!
- How is this possible?

Our Model

I(t) = number of initiations / non-replicated length / time

Our Model

Results

Increasing $I(t) \rightarrow$ narrows distribution

Controlling the end-time distribution

• Why increasing I(t) \rightarrow narrow distribution?

– δ -function case

mind the gap

- End-time distr. meets constraints \rightarrow v, I(t), # origins

Does spatial regularity matter?

Regularity only has a minor effect.

Conclusion

- Modelled replication
- EVT \rightarrow random completion problem
- Increasing *I(t)* helps timing control
- Spatial regularity unimportant
- Does nature adopt an optimized *I(t)*?

Ref: S.C.-H. Yang & J. Bechhoefer, PRE 78, 041917 (2008)

Commentary: S. Jun & N. Rhind, Physics 1, 32 (2008)