How Xenopus embryos Complete DNA replication reliably: Solution to the Random-Completion Problem

Scott Yang, John Bechhoefer
Simon Fraser University, Physics

Outline

- DNA replication in frog embryos
- Our model
- Results

http://embryology.med.unsw.edu.au/OtherEmb/frog1.htm

No S/M checkpoint

The Random Completion Problem

- Initiations are stochastic
- Typical replication time ≈ 20 min.
- Dead if >25 min.
- Occurs only 1 in 250 times!
- How is this possible?

Our Model

$I(t)=$ number of initiations / non-replicated length / time

Spatially random origins

Our Model

Random completion problem

Random completion problem

Results

Increasing $I(t) \rightarrow$ narrows distribution

Controlling the end-time distribution

- Why increasing $\mathrm{I}(\mathrm{t}) \rightarrow$ narrow distribution?
- δ-function case

- mind the gap
- End-time distr. meets constraints $\rightarrow \mathrm{v}, \mathrm{I}(\mathrm{t})$, \# origins

Does spatial regularity matter?

Regularity only has a minor effect.

Conclusion

- Modelled replication
- EVT \rightarrow random completion problem
- Increasing $I(t)$ helps timing control
- Spatial regularity unimportant
- Does nature adopt an optimized $I(t)$?

Ref: S.C.-H. Yang \& J. Bechhoefer, PRE 78, 041917 (2008)
Commentary: S. Jun \& N. Rhind, Physics 1, 32 (2008)

